
Practical Software Measurement
A Foundation for Objective Project Management

PSMPSMPSMPSM

Version 3.1
April 17, 1998

Office of the Under Secretary of Defense
for Acquisition and Technology

Joint Logistics Commanders
Joint Group on Systems Engineering

Page i

Page ii

Practical Software Measurement:
A Foundation for Objective Project Management

In Memory of Sharyn Tolochko
1965 - 1997

Page iii

Foreword

One of the most challenging tasks in developing and maintaining a software-
intensive system is to meet critical project cost, schedule, and technical objectives.
An increasing amount of the capability in today’s information, communications, and
weapons systems is implemented in software. Effective management of software
development and sustaining engineering efforts has therefore become a key factor in
project success.

The changing software engineering and acquisition environments in both the
government and commercial sectors requires more effective software management
techniques. More than ever, project and technical managers need objective
information to make day to day decisions to identify project issues, correct existing
problems, and manage prospective risks. This same information must also provide a
basis for evaluating organizational and enterprise level performance, and assessing
the impact of policy and investment decisions.

Practical Software Measurement: A Foundation for Objective Project
Management, was developed to help meet today’s software management challenges.
Practical Software Measurement describes how to provide objective information to
address project issues by integrating software measurement with existing risk
management and financial performance management disciplines.

The guidance in Practical Software Measurement is based on actual software
measurement experience on government and industry software-intensive projects. It
represents the best practices used by measurement professionals within the software
acquisition and engineering communities.

John McGarry
PSM Project Manager
April 17, 1998

Page iv

Page v

Acknowledgments

The following people are the principal authors of Practical Software Measurement: A
Foundation for Objective Project Management.

Dr. Elizabeth Bailey
Software Metrics, Inc.

Cheryl Jones
Naval Undersea Warfare Center

David Card
Software Productivity Consortium

Beth Layman
Lockheed Martin

Joseph Dean
Tecolote Research, Inc.

John McGarry
Naval Undersea Warfare Center

Fred Hall
Independent Engineering, Inc.

George Stark
The MITRE Corporation

The following organizations have participated in the development of Practical Software
Measurement: A Foundation for Objective Project Management.

U.S. Air Force Embedded Computer
Resources Support Improvement Program

U.S. Air Force Material Command

U.S. Air Force Software Technology
Support Center

U.S. Air Force Space Systems Support Group

U.S. Air Force Strategic Command U.S. Army Armament Research,
Development, and Engineering Center

U.S. Army Information Systems Software
Center

U.S. Army Material Command

U.S. Army Operational Test and Evaluation
Command

U.S. Army Software Metrics Office

U.S. Marine Corps Tactical Systems
Support Activity

U.S. Naval Air Systems Command

U.S. Naval Air Warfare Center U.S. Navy Operational Test & Evaluation
Force

U.S. Navy PEO (CU) U.S. Navy Space and Naval Warfare Systems
Command

Page vi

U.S. Naval Surface Warfare Center U.S. Naval Undersea Warfare Center

Office of the Under Secretary of Defense for
Acquisition & Technology

BDM Engineering Services Company

Boeing Corporation Defense Information Systems Agency

Defense Logistics Agency Defense Systems Management College

Federal Aviation Administration GTE Government Systems Corporation

INCOSE Independent Engineering, Inc.

Institute for Defense Analyses ITABHI Corporation

Lockheed Martin Corporation Logicon, Inc.

National Aeronautics & Space
Administration

National Defense University - Information
Resources Management College

National Park Service PRC - Litton

Raytheon - Hughes Corporation Sentel Corporation

Software Engineering Institute Software Metrics, Inc.

Software Productivity Consortium Tecolote Research Corporation

TeraQuest Metrics, Inc. The MITRE Corporation

TRW Virginia Polytechnic Institute - State
University

West Virginia University

Page vii

PSMPSM
Project issues and objectives drive the measurement requirements

The developer’s software process defines how the software is
actually measured

Collect and analyze data at a level of detail sufficient to identify and
isolate software problems

Implement an independent analysis capability

Use a systematic analysis process to trace the measures to the
decisions

Interpret the measurement results in the context of other project
information

Integrate software measurement into the project management
process throughout the life cycle

Use the measurement process as a basis for objective
communications

Focus initiall y on pro ject level anal ysis

Software Measurement Principles

Page viii

Page ix

SCOPE AND STRUCTURE OF THE GUIDE

Practical Software Measurement: A Foundation for Objective Project Management,
describes how to define and implement a software measurement process to support
the information needs of software-intensive acquisition and development
organizations. The Practical Software Measurement (PSM) Guide is intended for use
by:

� Project and technical managers - to gain a better understanding of the use of
measurement to manage their software-intensive systems,

� Project technical staff - to help implement a software measurement process in a
project environment, and

� Enterprise managers - to understand the requirements associated with
implementing measurement within their organizations.

The Guide is written for both government and commercial organizations responsible
for acquiring, developing, and maintaining software-intensive systems. In particular,
it provides guidance to implement a two-party measurement process between a
software acquirer and a software developer, or between different project
organizations.

Although primarily focused on the project level, the issue-driven measurement
process described in the Guide can be extended to address performance measurement
requirements at the organization and enterprise levels. As depicted in Figure 1, the
PSM measurement process is the basis for defining and selecting specific
measurement practices and tools in each of these areas.

Page x

 PSM

MEASUREMENT
PROCESS

Measurement Practices

Measurement Tools

M
easurem

ent Practices

M
easurem

ent Tools

M
ea

su
re

m
en

t P
ra

ct
ice

s

M
ea

su
re

m
en

t T
oo

ls

Enterprise Level
Performance
Measurement

Organizational Level
Performance
Measurement

Software Project Level
Measurement

Figure 1. PSM defines a multi-level measurement process.

Objective project management includes the disciplines of software measurement, risk
management, and financial performance management. The software measurement
process is central to each of these disciplines. PSM focuses on the software
measurement process and the key interfaces with risk and financial management.
The Guide addresses three major topics in the software measurement process:

� Tailoring the software measures to address specific project issues.

� Applying software measures to convert the measurement data into useable
information.

� Implementing a measurement process within an organization.

The Guide is intended for different types of users, and the information is structured
accordingly. Some information is repeated: this enables references to different parts
of the Guide to address a particular reader’s information needs. The Guide is
organized into eight parts that provide increasingly detailed treatments of the three
key measurement topics of tailoring, applying, and implementing.

Page xi

The eight parts of the Guide are as follows:

� Part 1, The Software Measurement Process - describes the software
measurement process at a summary level, and provides an overview of
measurement tailoring, application, and implementation. Part 1 explains what is
required to implement the measurement process on a software-intensive project.

� Part 2, Tailoring Software Measures - expands on the description of
measurement tailoring introduced in Part 1. Part 2 describes how to identify
project issues, select appropriate measures, and define a project software
measurement plan.

� Part 3, Measurement Selection and Specification Tables - provides a series of
information tables that help the user select the measures that best address the
project's issues. These tables support the detailed tailoring guidance of Part 2.

� Part 4, Applying Software Measures - expands on the description of
measurement application from Part 1. Part 4 describes how to collect and
process data, analyze the measurement results, and use the information to make
informed project decisions.

� Part 5, Measurement Analysis and Indicator Examples - provides examples
of measurement indicators and associated interpretations for the three types of
analysis defined in Part 4: estimation, feasibility analysis, and performance
analysis.

� Part 6, Software Measurement Case Studies - provides three different project
case studies that illustrate many of the key points made throughout the Guide.
The case studies address the implementation of a measurement process on a DoD
weapons system, a government information system, and a government system in
the sustaining engineering life-cycle phase.

� Part 7, Supplemental Information - contains a glossary, list of acronyms,
bibliography, project description, document comment form, and an index for the
Guide.

� Department of Defense Implementation Guide - this addendum provides
information specific to implementing the PSM guidance on Department of
Defense programs. It addresses implementation issues of particular concern to
DoD acquisition organizations.

Page xii

Page xiii

HOW TO USE THE GUIDE

Figure 2 shows how the various parts of the Guide work together to address the
software measurement process. Part 1 introduces the basic concepts, principles, and
terminology of PSM. Everyone should read this part of the Guide.

Parts 2 through 5 serve as detailed references to help project personnel implement the
measurement process. Parts 2 and 3 provide a more detailed description of
measurement tailoring and provide detailed tabular information to help select and
specify project measures. Parts 4 and 5 provide more detailed information on
measurement application. Part 5 provides examples of measurement indicators that
support estimation, feasibility analysis, and performance analysis. Readers may
become familiar with the contents and organization of these sections, but need not
read them in detail until performing the corresponding function.

Part 6 illustrates the applying of PSM in three typical project scenarios. Readers
should review the case study that most closely approximates their type of project.

Part 7 provides clarification and additional details to support the information
presented in the Guide.

The Additional Implementation Guidance provides detailed implementation guidance
to meet the requirements of distinct business sectors. The initial PSM Addendum in
this Guide addresses use of the issue-driven PSM measurement process on
Department of Defense projects.

Page xiv

Part 1
The Software
Measurement
Process

Part 6
Software
Measurement
Case Studies

Part 7
Supplemental
Information

PSM
3.1

Detailed Guidance

Chapter 2
Software
Measurement
Process
Overview

Chapter 1
Managing a
Software
Intensive
Project

Chapter 3
Tailoring
Software
Measures

Chapter 4
Applying
Software
Measures

Chapter 5
Implementing a
Measurement
Process

Case
Study 6A
Weapons
System

Case
Study 6B
Information
System

Case
Study 6C
Sensor
Sustaining
Engineering

Part 2
Tailoring
software
Measures

Part 4
Applying
Software
Measures

Part 3
Measurement
Selection and
Specification
Tables

Part 5
Measurement
Analysis and
Indicator Examples

Basic Guidance

Additional
Implementation
GuidanceI

Implementation Guidance

Practical Examples

Figure 2. Structure of the PSM Guidance Document

Page xv

TABLE OF CONTENTS

PART 1 - THE SOFTWARE MEASUREMENT PROCESS1

CHAPTER 1 - MANAGING A SOFTWARE-INTENSIVE PROJECT

CHAPTER 2 - SOFTWARE MEASUREMENT PROCESS OVERVIEW

CHAPTER 3 - TAILORING SOFTWARE MEASURES

CHAPTER 4 - APPLYING SOFTWARE MEASURES

CHAPTER 5 - IMPLEMENTING A MEASUREMENT PROCESS

PART 2 - TAILORING SOFTWARE MEASURES..67

CHAPTER 1 – MEASUREMENT TAILORING OVERVIEW

CHAPTER 2 – IDENTIFY AND PRIORITIZE PROJECT ISSUES

CHAPTER 3 - SELECT AND SPECIFY PROJECT MEASURES

CHAPTER 4 - INTEGRATE MEASURES INTO THE SOFTWARE PROCESS

CHAPTER 5 - MEASUREMENT TAILORING EXAMPLE

PART 3 - MEASUREMENT SELECTION AND SPECIFICATION TABLES113

CHAPTER 1 - HOW TO USE THE TABLES

CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND SPECIFICATION
TABLES

PART 4 - APPLYING SOFTWARE MEASURES ...203

CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW

CHAPTER 2 - COLLECT AND PROCESS DATA

CHAPTER 3 - ANALYZE ISSUES

CHAPTER 4 - MAKE DECISIONS

CHAPTER 5 - GENERAL ANALYSIS CONCEPTS

CHAPTER 6 - ESTIMATION

CHAPTER 7 - FEASIBILITY ANALYSIS

Page xvi

CHAPTER 8 - PERFORMANCE ANALYSIS

PART 5 - MEASUREMENT ANALYSIS AND INDICATOR EXAMPLES 285

CHAPTER 1 - MEASUREMENT INDICATOR EXAMPLE DESCRIPTION

CHAPTER 2 - ESTIMATION

CHAPTER 3 - FEASIBILITY ANALYSIS

CHAPTER 4 - PERFORMANCE

PART 6 - SOFTWARE MEASUREMENT CASE STUDIES 383

WEAPONS SYSTEM CASE STUDY.. 389

CHAPTER 1 - PROGRAM OVERVIEW

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION

CHAPTER 3 - SOFTWARE DEVELOPMENT

INFORMATION SYSTEM CASE STUDY... 433

CHAPTER 1 - PROJECT OVERVIEW

CHAPTER 2 - GETTING THE PROJECT UNDER CONTROL

CHAPTER 3 - EVALUATING READINESS FOR TEST

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT

SENSOR SUSTAINING ENGINEERING CASE STUDY............................ 473

CHAPTER 1 - PROJECT OVERVIEW

CHAPTER 2 – TAILORING MEASURES TO THE PROJECT

CHAPTER 3 – APPLYING SOFTWARE MEASURES

PART 7 - SUPPLEMENTAL INFORMATION .. 501

GLOSSARY

LIST OF ACRONYMS

BIBLIOGRAPHY

PSM PROJECT INFORMATION

INDEX

Page xvii

PSM ADDENDUM - DOD IMPLEMENTATION GUIDE................................533

CHAPTER 1 - MEASUREMENT IN THE ACQUISITION PROCESS

CHAPTER 2 - MEASUREMENT FOR INTEGRATED PRODUCT TEAMS

CHAPTER 3 - PUTTING MEASUREMENT ON CONTRACT

CHAPTER 4 - USING WORK BREAKDOWN STRUCTURES

CHAPTER 5 - INTEGRATING MEASUREMENT WITH EARNED VALUE

Page xviii

PSMPSMPSMPSM
THE SOFTWARE

MEASUREMENT

PROCESS

PART 1

Part 1 - The Software Measurement Process

Page 2

Part 1 - The Software Measurement Process

Page 3

THE SOFTWARE MEASUREMENT PROCESS

Measurement is a key element of successful management in every well established
engineering discipline. Practical Software Measurement: A Foundation for
Objective Project Management, presents a proven approach for tailoring and
implementing an effective measurement process for software-intensive projects. The
objective is to provide project managers with the software information required to
make informed decisions that impact project cost, schedule, and technical objectives.

PSM describes software measurement as a systematic, but flexible process that is an
integral part of the overall project management structure. The PSM measurement
process is driven by the project issues. It is adapted to meet the specific information
needs and characteristics of each individual project. The process is based on a
proven set of software measurement principles derived from actual experience on
government and industry projects. These principles actually represent measurement
“best practices.” They make the PSM measurement process an effective
management tool, not just another project management “requirement.”

The PSM measurement process provides a foundation for objectively managing the
technical and acquisition aspects of a software-intensive project. The process,
implemented either as a stand-alone discipline or integrated with project risk
management and financial performance management techniques, establishes a basis
for informed decision making and communication throughout the project
organization.

Part 1 of Practical Software Measurement describes the principles and techniques
for tailoring, applying, and implementing an effective software measurement
process. It presents a comprehensive view of the complete measurement approach in
terms of “what” should be done. Other parts of the Guide contain detailed “how
to” information for the key measurement activities described in Part 1.

This part of the Guide is organized into five chapters:

• Chapter 1, Managing a Software-Intensive Project - explains how software
measurement works with risk management and financial performance
management to help project managers succeed.

• Chapter 2, Software Measurement Process Overview - summarizes the PSM
measurement process and introduces the PSM software measurement principles.

Part 1 - The Software Measurement Process

Page 4

• Chapter 3, Tailoring Software Measures - describes a systematic approach for
selecting and defining measures that directly address project specific software
issues and objectives.

• Chapter 4, Applying Software Measures - describes a systematic approach for
converting software measurement data into actionable project management
information.

• Chapter 5, Implementing a Measurement Process - describes the activities
required to get measurement into practice within an organization.

Part 1 - The Software Measurement Process

Page 5

TABLE OF CONTENTS

CHAPTER 1 - MANAGING A SOFTWARE-INTENSIVE PROJECT7

1.1 Motivation for Software Measurement ...7

1.2 Quantitative Software Management Disciplines..9

CHAPTER 2 - SOFTWARE MEASUREMENT PROCESS OVERVIEW...............11

2.1 Basic Elements of the Software Measurement Process.........................11

2.2 Software Measurement Principles ..12

2.2.1 Project Issues and Objectives..13

2.2.2 Developer’s Software Process ...14

2.2.3 Level of Data Collection and Analysis..14

2.2.4 Independent Analysis Capability ..15

2.2.5 Systematic Analysis Process ...16

2.2.6 Project Context..16

2.2.7 Life-Cycle Integration ..17

2.2.8 Objective Communication ...17

2.2.9 Project Level Analysis ...18

2.3 Life-Cycle Application ...18

2.3.1 Project Planning ..18

2.3.2 Development...19

2.3.3 Sustaining Engineering..21

2.4 Measurement Implementation Roles ..22

CHAPTER 3 - TAILORING SOFTWARE MEASURES25

3.1 Measurement Tailoring Overview ...25

3.2 Identify and Prioritize Project Issues..26

3.2.1 Identifying Project Issues...27

3.2.2 Mapping Project Issues to Common Software Issues...28

3.2.3 Prioritizing Project Issues ..29

3.3 Select and Specify Project Measures...30

3.3.1 Measurement Category Selection..30

3.3.2 Selecting Appropriate Measures ..31

3.3.3 Specifying Data Requirements ..33

Part 1 - The Software Measurement Process

Page 6

3.4 Integrate Measures into the Software Process 33

3.4.1 Characterizing the Software Environment... 34

3.4.2 Identifying Measurement Opportunities... 34

3.4.3 Specifying Measurement Implementation Requirements... 35

3.5 Organizational Software Measurement.. 35

CHAPTER 4 - APPLYING SOFTWARE MEASURES..................................... 39

4.1 Measurement Application Overview .. 39

4.2 Collect and Process Data ... 40

4.2.1 Access Data ... 40

4.2.2 Verify Data ... 40

4.2.3 Normalize Data... 41

4.3 Analyze Issues ... 41

4.3.1 Analysis Model ... 42

4.3.2 Software Management Indicators.. 43

4.3.3 Analysis Activities... 44

4.4 Make Decisions.. 50

4.4.1 Report Results.. 50

4.4.2 Select Alternative ... 51

4.4.3 Take Action .. 51

CHAPTER 5 - IMPLEMENTING A MEASUREMENT PROCESS........................ 53

5.1 Measurement Implementation Overview ... 53

5.2 Obtain Organizational Support... 54

5.3 Define Measurement Responsibilities ... 55

5.4 Provide Measurement Resources .. 57

5.4.1 Measurement Tools .. 57

5.4.2 Measurement Training.. 59

5.5 Initiate the Measurement Process.. 60

5.6 Using the Measurement Results .. 61

5.6.1 Project Development Viewpoint .. 62

5.6.2 Executive Management Viewpoint .. 63

5.6.3 Process Improvement Viewpoint... 63

5.6.4 Team Viewpoint.. 64

5.7 Lessons Learned... 65

Part 1 - The Software Measurement Process

Page 7

CHAPTER 1 - MANAGING A SOFTWARE-INTENSIVE PROJECT

This chapter explains the benefits of adopting a quantitative management approach on
software-intensive development and maintenance projects. It describes how software
measurement works with risk management and financial performance management to
improve project performance through informed decision-making.

1.1 Motivation for Software Measurement

Effective software management has become increasingly important to the success of
both government and commercial enterprises. Many of the capabilities in today’s
information, communications, and weapons systems are implemented with software.
In the current acquisition and business environments, the ability of the project manager
to effectively manage the critical software issues has become an important factor in a
project’s success. Reductions in resource availability and rapid changes in software
technology make delivering a software-intensive system increasingly challenging. New
methods are required to help a project manager plan, monitor, and control the software
processes and products that now form a large part of every project.

Software measurement has proven to be an effective tool in helping to manage
software-intensive projects in both the government and commercial sectors. Software
measurement, when integrated into the overall project management process, provides
the information necessary to identify and manage many of the software issues that are
inherent in every project. It helps the project manager identify risks; track specific
problems; assess the impacts of these problems on project cost, schedule, and
performance objectives; develop alternative solutions; and select the best approach for
correcting the problems. Software measurement provides the insight a project
manager needs to make the software decisions critical to project success.

Why should a project manager measure software? Recent changes in the government
acquisition process have emphasized the need for better software management tools
and techniques. These changes are mirrored in the commercial business sector where
software has become a major factor in corporate investment and business strategies.
The use of Commercial Off the Shelf (COTS) and reusable software components, and
the implementation of common system architectures are changing the way software is
acquired and how systems are developed. New technologies and development
processes require that the project manager have better and more objective software
information to help make the day-to-day decisions necessary to guide the project to
success. Integrated Product Team (IPT) and concurrent engineering approaches are
being adopted to improve the management of large, complex software systems. These

Part 1 - The Software Measurement Process

Page 8

approaches require continuous and effective communications within the project team
to determine the best solutions to identified problems. Software measurement provides
the objective information essential for such communications.

Software measurement helps the project manager do a better job. It helps to define
and implement more realistic software plans, and then to accurately monitor progress
against those plans. It provides the information required to make key project decisions
and take appropriate action. It helps to relate and integrate the information derived
from other project and technical management disciplines. Specifically, software
measurement provides objective software information to help the project manager:

• Communicate effectively throughout the project organization - Objective
information reduces the ambiguity that often surrounds the software issues on a
project. Measurement allows software issues to be explicitly identified,
prioritized, tracked, and communicated at all levels of the organization. It is
particularly useful in supporting communication between the project manager and
the developer. PSM uses the term “developer” to represent organizations
responsible for the development and sustaining engineering of software-intensive
systems.

• Identify and correct problems early - Rather than waiting for something bad to
happen, measurement facilitates a pro-active software management strategy.
Potential problems are identified as risks to be assessed and managed.
Measurement focuses attention on the early discovery and correction of software
technical and management problems that can be more difficult to address later.

• Make the key tradeoffs - Every project has constraints. Cost, schedule, quality,
functionality, and performance all have to be managed together to make the project
a success. Decisions in one area often have an impact on the others.
Measurement allows the project manager to objectively assess these impacts, and
make the proper tradeoff decisions to best meet project objectives. Even in highly
constrained project environments, measurement helps to optimize performance
within the scope of project objectives.

• Track specific project objectives - Measurement, better than any other software
management tool, accurately describes the status of the software processes and
products. It objectively represents the progress of software activities and the
quality of software products. It helps to answer key questions such as: “Is the
development on schedule?,” and “Is the software ready to deliver?”

• Defend and justify decisions - The current government acquisition and
commercial business environments emphasize successful project performance. A
decreasing tolerance for failing projects, coupled with the need to accurately
evaluate the performance of all government and business initiatives, requires that

Part 1 - The Software Measurement Process

Page 9

the project manager be able to effectively defend and justify decisions.
Measurement can provide an effective rationale for selecting the best alternative.

Like any project management tool, software measurement cannot guarantee that a
project will be successful. It does, however, help the project manager take a pro-active
approach in dealing with the issues that are part of any software-intensive project.
Measurement establishes a basis for objective communications within the project team.
This facilitates making decisions that materially impact the outcome of a project
quickly and correctly. Software measurement helps the project manager to succeed.

1.2 Quantitative Software Management Disciplines

Software measurement does not replace other management skills and techniques. It
also does not operate in a vacuum. In particular, measurement supports the
quantitative disciplines of risk management and financial performance management.
Figure 1.1-1 shows that these three disciplines have parallel activities that define
expectations and concerns, establish associated project plans, and provide appropriate
information and feedback. While these disciplines can be effectively implemented on
an independent basis, the greatest value is derived from an integrated approach. Risk
analysis helps to identify and prioritize software issues that drive the measurement
process. The measurement process helps quantify the likelihood and impact of risks.
The measurement process also provides an objective basis for reporting financial
performance using techniques like earned value or activity based cost accounting.
Risks, measurement results, and financial performance all need to be considered when
making project decisions. Together, these three quantitative management disciplines
complement traditional management skills and techniques.

Measurement provides a baseline quantitative process for implementing risk
management and financial performance management on a project. While detailed
treatments of risk management and financial performance management are beyond the
scope of this Guide, some understanding of these topics is necessary to gain the full
benefit of software measurement. The Guide describes the interface between these
disciplines and the software measurement process.

Part 1 - The Software Measurement Process

Page 10

Risk
Management
Plan

Measurement
Plan Financial

Performance
Plan

Assess
Risks Tailor

Measures Establish
Budgets

Manage
Risks Apply

Measures Evaluate
Performance

Figure 1.1-1. Quantitative Software Management Disciplines

Part 1 - The Software Measurement Process

Page 11

CHAPTER 2 - SOFTWARE MEASUREMENT PROCESS OVERVIEW

This chapter introduces a flexible approach for employing software measurement to
improve project management effectiveness. This approach applies to all types of
software engineering projects, both government and commercial. Practical Software
Measurement defines a systematic process that uses software measurement to address
specific project issues and objectives. This chapter introduces nine basic software
measurement principles that describe the measurement process in which they are
embedded.

2.1 Basic Elements of the Software Measurement Process

How does an organization that wants to take advantage of the benefits of software
measurement proceed? A number of specific measurement prescriptions have been
offered to government and industry organizations with limited success. Rather than
present another fixed measurement scheme, this Guide presents a flexible measurement
approach. PSM views measurement as a process that must be adapted to the technical
and management characteristics of each project. This measurement process is issue-
driven. That is, it provides information about the specific issues and objectives
important to project success.

As shown in Figure 1.2-1, the PSM approach defines three basic measurement
activities. The first two processes, tailor measures to address project information
needs and apply measures to obtain insight into project risks and issues, are the basic
subprocesses of the PSM measurement process. The third process, implement
process, includes the activities necessary to establish this measurement process within
an organization.

The tailoring process addresses the selection of an effective and economical set of
measures for the project. The application process involves collecting, analyzing and
acting upon the data defined in the tailoring process. The implementation process
addresses the cultural and organizational changes necessary to establish a
measurement process. Implementing a measurement process requires the support of
project and executive managers, and the entire project team.

Part 1 - The Software Measurement Process

Page 12

Software Program
Team

Data Actions

External
Constraints

Issues, Objectives, Software
Process Characteristics

Measurement
Needs

Software Measurement Process

Tailor
Measures

Apply
Measures

Implement
Process

Figure 1.2-1. Software Measurement Process

The measurement process must be integrated into the developer’s software process.
The nature of the software process determines the opportunities for measurement.
Since the software process is dynamic, the measurement process also must change and
adapt as the project evolves. This makes the activities of measurement tailoring and
application iterative throughout the project life cycle. Some of the issues, measures,
and analysis techniques may change over time to meet the project’s information needs.

2.2 Software Measurement Principles

Each project is described by different management and technical characteristics, and
by a specific set of software issues and objectives. To address the unique
measurement requirements of each project, PSM explains how to tailor and apply a
generally defined software measurement process to meet specific project information
needs. To help do this, PSM defines nine principles that describe the characteristics of
an effective measurement process.

The nine PSM software measurement principles are:

• Project issues and objectives drive the measurement requirements.

• The developer’s software process defines how the software is actually measured.

• Collect and analyze data at a level of detail sufficient to identify and isolate
software problems.

Part 1 - The Software Measurement Process

Page 13

• Implement an independent analysis capability.

• Use a systematic analysis process to trace the measures to the decisions.

• Interpret the measurement results in the context of other project information.

• Integrate software measurement into the project management process throughout
the software life cycle.

• Use the measurement process as a basis for objective communication.

• Focus initially on project level analysis.

The following subsections discuss each of the nine principles. Experience has shown
that a measurement process that adheres to these principles is more likely to succeed.

2.2.1 Project Issues and Objectives

Project issues and objectives drive the measurement requirements. The purpose of
software measurement is to help management achieve project objectives by identifying,
tracking, and managing actual problems and potential obstacles to success. Project
objectives are goals and requirements usually expressed in terms of functionality, cost,
schedule, and quality. Issues are areas of concern that present obstacles to achieving
project objectives. Issues include problems, risks, and the lack of information.

PSM emphasizes identifying project issues at the start of a project and then using the
measurement process to provide insight into those issues throughout the project.
Conducting a thorough risk analysis at the beginning of a project facilitates the initial
identification and prioritization of issues. However, even if a formal risk analysis has
not been performed, issues still can be identified. Note that not all risks or issues are
quantifiable, nor are all risks covered by PSM.

As a project progresses, its risks may evolve into problems, or hopefully, be mitigated
out of existence. Note that identifying risks does not necessarily mean that a project is
in trouble, but rather that the potential for trouble has been recognized so that it can be
managed.

While some issues are common to most projects, each project typically has some
unique issues. Moreover, the priority of the issues usually varies from project to
project. Most project-specific software issues fall into one of six classes of common
software issues, as follows:

• Schedule and Progress

• Resources and Cost

Part 1 - The Software Measurement Process

Page 14

• Growth and Stability

• Product Quality

• Development Performance

• Technical Adequacy

Focusing measurement attention on items that provide information about the project’s
issues minimizes the effort required for the measurement process. Resources are not
expended on collecting data that may not be used.

2.2.2 Developer’s Software Process

The developer’s software process defines how the software is actually measured.
The definition of a measurement process cannot be based solely on the objectives of
the acquisition project manager. To collect measurement data in the most cost
effective and useful manner, the software process of the developer and the
management process of the acquirer must both be considered. Project issues identify
the information that the measurement process must derive from the data. The
developer’s software process determines what specific data items are to be collected
and how that can be accomplished.

Since one of the purposes of the measurement process is to provide insight into the
performance of the developer, the measures that are collected must objectively
represent the activities and products of the developer’s software process. Measures
that are normally collected by the software developer should be selected, if they are
applicable. Measured selection should also consider the software processes employed
by any subcontractors.

2.2.3 Level of Data Collection and Analysis

Collect and analyze data at a level of detail sufficient to identify and isolate
software problems. The measurement process defined in PSM depends on the
periodic collection, processing, and analysis of measurement data rather than on the
review of pre-packaged analysis reports. This data includes plans, changes to plans,
and counts of actual software activities, products, and expenditures. The acquisition
project office should receive data from the developer at a low enough level of detail to
allow for the isolation of problems by software component and activity. The software
unit level, as defined by the software component structure, and the software activity
level, as defined by the work breakdown structure, are usually the levels of detail most
commonly used.

Part 1 - The Software Measurement Process

Page 15

Measurement indicators that address project issues and objectives are computed from
measurement data collected by the developer. Good software developers can provide a
wide range of data items. The specific data items needed for project management
depend on the project issues. When a proposed measure proves difficult to collect or
does not provide the required information, an effective substitute may often be found
by looking at related measures. Collecting appropriately detailed data allows the
measurement analyst or team to perform a variety of different analyses with the same
data. Collecting the right data is a key requirement for defining a flexible
measurement process.

2.2.4 Independent Analysis Capability

Implement an independent analysis capability. It is recommended that both the
acquirer and the developer establish and maintain an independent measurement
capability. This principle is motivated by the recognition that objective
communication can only occur when both parties have achieved an understanding of
the data under discussion. The ideal situation involves an independent measurement
organization in the acquisition project office that regularly receives raw data from the
developer, analyzes it, and presents the results to the project manager. Alternatively,
the independent analysis function may be provided by an Independent Verification and
Validation (IV&V) organization, an engineering and management support contractor,
or another third party organization independent of the developer.

The need for an independent analysis capability is applicable in both the government
and commercial sectors. Each organization within a project team, especially the
developer and the acquirer, generally has similar, but uniquely prioritized issues. An
independent analysis capability allows each organization to focus its evaluation efforts
on specific areas of concern. In some project organizations with effective and
disciplined integrated project teams, measurement analysis responsibility can be
assigned to a single project organization. In practice, however, these project
organizations are rare. Best measurement practice dictates an independent analysis
capability be established for each organization that makes critical software related
project decisions.

Note that without an independent analysis capability, the delivery of data to the project
office (Section 2.2.3) has no value. Similarly, without sufficiently detailed data, the
ability of the acquirer to conduct an independent analysis will be seriously limited.
Ideally, the project office and developer will share the same database.

Part 1 - The Software Measurement Process

Page 16

2.2.5 Systematic Analysis Process

Use a systematic analysis process to trace the measures to the decisions.
Measurement-based conclusions and recommendations must be generated in a
systematic manner to be accepted as a basis for management decisions and subsequent
action. Key concerns of management about such information are its traceability and
repeatability. Traceability means that the conclusions and recommendations are
generated from measurement data in a defined sequence of steps. Repeatability means
that different analysts following the same sequence of steps are likely to arrive at the
same conclusions and recommendations. An ad-hoc analysis approach does not
provide management with the confidence necessary to act on measurement
information.

PSM addresses three types of analysis. At the start of a project, or when major
changes are implemented, estimates are developed as the basis for planning. The
plans are then analyzed in terms of their feasibility. For example, the project manager
may ask questions such as: “Is this a reasonable size estimate?” or, “Can the software
be completed with the proposed amount of effort and meet the delivery date?” Once
the project is underway, the manager’s concern turns to performance. The key
questions focus on tracking against plans and may include: “Is the project on
schedule?” or, “Are we developing a quality product?”

2.2.6 Project Context

Interpret the measurement results in the context of other project information.
Measurement provides an indication or warning that a problem may exist. No
measurement result by itself is good or bad. For example, assume that the number of
software unit designs completed to date is lower than planned. This situation might
occur because the project is not fully staffed, but while there is still time to add staff
and recover. It might occur while the project is fully staffed because the developer’s
productivity is much lower than planned. The variance between planned and actual
values indicates only that the project manager should pay attention to this issue now.
Additional information must be collected to evaluate the cause and severity of the
situation to assess its probable impact on project success.

Some aspects of, or contributors to, a software issue may not be easily quantified. For
example, getting the requirements correct may depend on adequate interaction with the
system’s intended user. Even if production of the requirements document is on
schedule, it may not have the right content. Thus, qualitative data about the level of
user interaction must be considered when assessing progress in this example.
Measurement results must be examined in the context of other information about the
project to determine whether action is warranted, and what action should be taken.

Part 1 - The Software Measurement Process

Page 17

2.2.7 Life-Cycle Integration

Integrate software measurement into the project management process throughout
the software life cycle. The issue-driven software measurement approach described in
PSM applies throughout the software life cycle. For purposes of this document, three
major life-cycle phases are defined: project planning, development, and sustaining
engineering. Four principal software activities occur within the development and
sustaining engineering phases. These are requirements analysis, design,
implementation, and integration and test. Measurement results must be provided
periodically and at appropriate decision points throughout the life cycle.

Decisions made in one project phase or activity affect the results of other project
phases and activities. Measurement provides insight into the current phase, as well as
helping to project the consequences of current actions into later phases. For example,
selecting a specific software developer during project planning affects the level of
performance realized by the project during development and sustaining engineering.
Consequently, it is important to adopt a life-cycle perspective when implementing a
measurement process. Over the course of the software life cycle, the issues of concern
to the project managers may change. The measures used to monitor those issues
should change accordingly. The basic measurement principles, however, still apply.

2.2.8 Objective Communication

Use the measurement process as a basis for objective communication.
Measurement activities cannot be conducted by either the development or acquisition
organization in isolation. At each step of defining the measurement requirements and
analyzing the measurement data, the project manager must communicate with the
entire software project team. Most decisions that are based on the data will affect
more than one party. A corrective action that is identified and planned in cooperation
with the developer is more likely to succeed than one that appears to be arbitrarily
imposed by the acquisition project manager.

While there may be some differences between the issues of concern to the software
acquirer and the software developer, there should also be a high degree of
commonality. The concept of Integrated Product and Process Development (IPPD)
and the functioning of an Integrated Product Team (IPT) depend on frequent and
objective communication about technical and management issues among all team
members. Measurement provides an effective vehicle for this.

It is important to ensure that all parties use the same data and have a common
understanding of the data definitions, to know what the data represents. Most data
comes from the developer; therefore, the burden is primarily on the acquirer to
understand the developer’s software process and measurement data.

Part 1 - The Software Measurement Process

Page 18

2.2.9 Project Level Analysis

Focus initially on project level analysis. Project success means meeting specific
project objectives. While the larger organization of which the project is a part may
have concerns and objectives that span multiple projects, this Guide stresses the need
to measure and understand individual projects before attempting to make cross-project
comparisons. Nevertheless, at several points in the measurement process, the analyst
will need to refer to normative data and simple models based on the results derived
from a large number of projects.

Although PSM focuses on project level measurement and analysis, the issue-driven
measurement process defined in the guidance is equally applicable in addressing
organization and enterprise level performance measurement requirements. The
analysis techniques used at these higher levels, however, require valid data from the
project level to evaluate overall impacts in areas such as return on investment, and
cycle time reductions. As such, organization and enterprise managers must ensure that
their individual projects have all implemented an effective measurement process.

2.3 Life-Cycle Application

The issue-driven measurement approach and flexible analysis process described in this
Guide apply throughout the software project life cycle. The issues, measures, and
focus of analysis may change as the project progresses. This Guide discusses a three-
phase software life-cycle model consisting of Project Planning, Development, and
Sustaining Engineering. This section discusses some of the unique measurement
concerns in each life-cycle phase.

2.3.1 Project Planning

During the Project Planning Phase, the project manager’s primary concerns are related
to estimating project magnitude in terms of software size, cost, effort, and schedule;
assessing the feasibility of the project plans; and selecting the most capable software
developer for the job. In the typical two party software acquisition scenario, two sets
of estimates must be developed and corresponding plans must be analyzed as follows:

• Project plan - The acquisition organization develops an estimate as a basis for
overall planning. The acquirer assesses the required functionality, resources, and
schedule defined for the project. Constraints may make it difficult to adjust the
level of resources and schedule; therefore the result of the feasibility assessment
may be a quantification of risk rather than revised budgets and milestones.

Part 1 - The Software Measurement Process

Page 19

• Developer plan - The developer produces an estimate and plan for the contracted
portion of the project. The acquirer assesses the developer’s estimates and
approach to satisfying the project plan in terms of required functionality,
resources, and schedule. The technical approach, quality, and capability of each
potential developer should also be assessed.

Since the overall functionality, resource, and schedule objectives are established by the
project, the major criteria in selecting the developer will be the proposed technical
approach, historical product quality, and software development capability. These are
all based on performance on current or previously completed projects.

Measurement data can help evaluate the capability of a potential developer.
Measurement-related information used to select the developer should include the
following:

• Past performance data - The developer should be able to provide size, effort, and
quality data from past projects. When comparing potential developers’ past
performance, be sure to compensate for differences in how measures such as lines
of code, effort and software problem reports are defined.

• Overall process maturity - The measurement maturity of an organization is one
dimension of its overall process maturity. Organizations with an ad-hoc
development process may have difficulty providing the basic measurement data
described in this Guide.

• Maturity of the measurement process - Sometimes organizations that rate well
in terms of overall software process maturity have weak measurement processes.
The ability of the developer to provide accurate and meaningful measurement data
appropriate to the project issues must be considered.

Of course, the choice of a developer can not be based solely on measurement related
factors. The measurement capability of potential developers is just one more factor
that needs to be considered along with the other technical, management, and experience
factors on which a source selection is based. Measurement results do, however, help
determine if the developer has the potential to achieve project objectives, and plays an
important role in performance based acquisition.

2.3.2 Development

During the development phase, the project manager continues to be concerned with the
issues identified in project planning. Even developer capability needs to be tracked
because it can change. For example, a high level of personnel turnover could result in
lower productivity. During this phase, the focus of analysis turns to performance

Part 1 - The Software Measurement Process

Page 20

relative to the plans, rather than the feasibility of the plans themselves. However, any
changes to estimates and plans should continue to be assessed for feasibility.

Software development tasks often are categorized into four activities: requirements
analysis, design, implementation, and integration and test. Depending on the software
development model adopted for the project, these activities may be organized using
incremental or evolutionary approaches, not just as a sequential “waterfall.” Each
activity introduces new opportunities for measurement.

During the software requirements analysis activity, the primary software issues are
growth and stability, schedule and progress, and product quality. Each of these in
turn impacts software cost. The overall magnitude and stability of requirements can
be tracked by counting requirements and changes. However, progress and quality are
more difficult to measure during this phase. In part, this difficulty is caused by the ad-
hoc nature of the requirements process in many organizations. Measurement can only
reflect the developer’s process and product. It does not add structure.

The requirements definition process must be well defined to obtain meaningful
measures. One effective requirements technique is to plan and conduct a series of
technical reviews as part of the software process. This technique offers several
opportunities for measurement. Completion of the reviews can be tracked to assess
progress. Action items and problems from the reviews can be tracked to assess
quality.

During design and implementation, the focus is on schedule and progress, product
quality, and technical adequacy. The project manager must continue to track growth
and stability to avoid surprises. Again, the opportunity to gain insight into project
status depends on the structure of the developer’s software process. To the extent that
the development process defines discrete design and implementation activities,
progress is easier to measure. Sometimes progress comes at the expense of quality.
For example, component testing might be downscaled in order to meet interim delivery
milestones. The project manager needs to recognize and address this situation if it
arises. It is easiest to do this if the component test activities are discretely planned and
tracked as part of the measurement process. During design and implementation, the
adequacy of the developer’s technical approach should be assessed. Any deficiencies
must be recognized as soon as possible so that alternative solutions can be identified
and implemented.

During integration and test, the project focus is on getting the product ready to be
delivered. This usually means that the focus is on evaluating product quality.
Integration and test is often one of the shortest and most intense activities.
Consequently, the measurement process must focus on providing rapid data collection,
analysis, and feedback to the project manager so that effective decisions can be made
in a timely manner. On many projects, this results in increased analysis on software

Part 1 - The Software Measurement Process

Page 21

problem reports. A weekly reporting interval for problem reports often is used during
this activity. In some cases, daily test progress and problem report status are
provided. The determination of the reporting interval depends on many factors, but
there is usually an increase in measurement activity during testing.

2.3.3 Sustaining Engineering

Sustaining engineering continues to increase the focus on the issue of product quality
and away from growth and stability. The sustaining engineering process may be
implemented in many different ways. An organization other than the software
developer is often responsible for sustaining engineering. The new organization is
likely to use a different management structure, personnel, and process than the
developer. Even though the basic measurement principles still apply in sustaining
engineering, the measurement process for a sustaining engineering organization usually
needs to be planned separately from that of the software developer.

The typical sustaining engineering organization is responsible for two different types
of software change efforts: 1) major enhancements that adapt the software to mission
and technology changes, and 2) basic maintenance that integrates small enhancements
and problem corrections. These are discussed below. Some organizations often define
a special category of basic maintenance to implement emergency problems.

Major Enhancements

Software-intensive systems often experience significant changes in mission and
functional requirements over their life cycles. Moreover, the increasing trend towards
incremental and evolutionary development has resulted in a growing number of
projects that include the development and integration of additional capability after the
software system is initially fielded. These large enhancements usually are managed as
new development efforts. They do not follow the usual “change and fix” process for
basic maintenance discussed below.

Basic Maintenance

Basic maintenance includes small adaptive changes as well as fixes made to repair
errors previously inserted into the system. The measures available during maintenance
often differ significantly from those available during development and major
enhancement efforts. For example, during development, work unit progress measures
may be collected to track the design, coding, and integration of software components.
During software maintenance, the unit of work tracked often becomes the change
request rather than the component. Reducing the number of outstanding change
requests using a fixed level of staffing is a typical goal of a maintenance organization.

Part 1 - The Software Measurement Process

Page 22

During basic software maintenance, problem reports and change requests may be
handled individually or bundled together under a planned release cycle to define new
versions of the software product. It is easier to measure and control the version-based
process. However, the nature of the system being supported often dictates the version
release strategy and other aspects of the software engineering process. The
measurement process must be adapted to the software engineering process actually
employed.

Most planned release maintenance processes have three phases: analysis, release
planning, and implementation. During analysis, change requests are reviewed, impacts
assessed, and customer commitments are made. During release planning, changes are
packaged into releases, budgets are assigned, and schedules are set. During
implementation, the changes assigned to a release are designed, coded, and tested.

Throughout this process, the key issues are controlling the quantity and scope of
changes, minimizing the impact of changes on the performance of the deployed system,
and ensuring that changes are implemented in time to support the user’s needs.

To implement emergency problems, the schedule is usually critical. Problem reports
are usually handled individually. This impacts the measures available for use.

2.4 Measurement Implementation Roles

The software measurement process is an integral part of the software development,
support, and acquisition processes. As such, many members of the project
organization play important roles. Appropriate resources must be allocated in order
for the measurement process to work effectively.

The most important roles in the software measurement process are listed below and are
summarized in Figure 1.2-2:

� Executive manager - The executive manager is generally an organizational or
enterprise manager responsible for multiple projects. This manager defines higher
level performance and business objectives and ensures that individual projects
support the overall organizational strategy. The executive manager uses
measurement results to make organizational and enterprise level decisions. Both
the acquirer and the developer organizations generally have a number of executive
managers within their management structures.

� Project or technical manager - This role, generally referred to as the “project
manager” in PSM, is responsible for identifying issues, reviewing analysis results,
and acting on measurement information. In the optimal case, both the project
acquisition and development organizations have project managers who use the

Part 1 - The Software Measurement Process

Page 23

measurement information to make decisions for their respective organizations, and
to communicate objectively between the organizations.

� Measurement analyst - This role can be assigned to either an individual or a team
of personnel. Responsibilities include developing the project measurement plan,
collecting and analyzing measurement data, and reporting results throughout the
project organization. Usually, both the acquisition and development organizations
have a measurement analyst or group assigned the corresponding responsibilities.
Each organization within the project that must make critical project and business
decisions should have an independent measurement analysis capability.

� Project development team - This is the team of acquisition and development
organization personnel responsible for the day to day development of the software
system or product. The development team can be comprised of both government
and industry organizations, and may be defined within an IPT structure. The
development team collects measurement data on a periodic basis, and uses the
measurement results to guide all project software engineering activities. PSM uses
the terms “developer” and “development organization” to refer to organizations
responsible for both new software development projects and sustaining engineering
efforts.

• Tailors measures to address program
issues

• Collects and analyzes measurement data
and reports results

Executive
Manager

• Establishes high level performance objectives
• Uses measurement results to make organizational and

 enterprise level decisions

Project
Manager

• Identifies and manages project issues
• Uses measurement results to make program decisions

Measurement
Analyst

Development
Team

• Uses measurement results
in software engineering
efforts

• Provides measurement
data

Figure 1.2-2. Measurement Roles

Ensuring that all participants involved in the measurement process understand and
commit to their responsibilities helps ensure that accurate information is available to
support effective communication and informed decision making.

While PSM focuses on assisting software project and technical managers, the issue-
driven measurement process can also support organization and enterprise level

Part 1 - The Software Measurement Process

Page 24

measurement requirements. Executive managers may need information to address
issues outside of the scope of the individual projects, such as establishing fee-for-
service rates or determining return on investment. All of these issues should be
considered in the measurement tailoring process. As much as possible the same
measures should be used to address both organizational and project issues.

Experience from a wide variety of commercial and government organizations shows
that the cost of implementing and sustaining a measurement process, such as the one
described in this Guide, ranges from one to five percent of the project’s software
budget. This is a relatively small amount when compared to the cost of conventional
review and documentation-based techniques for monitoring the project.

Part 1 - The Software Measurement Process

Page 25

CHAPTER 3 - TAILORING SOFTWARE MEASURES

The first part of the software measurement process focuses on identifying the
measurement requirements to address specific project issues. This process includes
identifying the project issues, selecting and specifying appropriate measures, and
integrating the measures into the software process. In most cases, the measurement
requirements are established through mutual agreement between the acquirer and the
developer. PSM defines a process for converting project issues into data requirements
that can be implemented within the project context. This process and its component
activities are discussed in this chapter.

3.1 Measurement Tailoring Overview

This section outlines the process for defining project measurement requirements and
developing an appropriate measurement plan. The objective of the measurement
tailoring process is to define the set of measures that provides the greatest insight at
the lowest cost. The tailoring process focuses effort and resources on getting
information on high-priority issues first.

Project issues drive the entire measurement process. The issues determine which
measures are selected, how the measurement results are analyzed, and how managers
make their decisions. Figure 1.3-1 illustrates the measurement tailoring process. This
figure is an expansion of the tailor measures subprocess depicted in Figure 1.2-1. As
shown, identification and prioritization of specific project issues is the first activity in
tailoring. The issues are derived by reviewing project information such as objectives,
constraints, technical strategies, estimates, and risk analysis results, as well as general
organization requirements. The basic concern in this activity is identifying the
software issues that have the greatest potential impact on the project.

The next tailoring activity is to define appropriate project-specific measures. The
measures are selected by applying the PSM defined measurement tailoring
mechanisms of common software issues, measurement categories, and measures. The
basic objective in this activity is to select measures most appropriate to the issues.

Part 1 - The Software Measurement Process

Page 26

Software
Process
Characteristics

Proposed
Changes

Proposed
Changes

Project Information and
Risk Assessment Results

Measurement
Plan

New
Issues

Identify and
Prioritize

Project Issues

Select and
Specify Project

Measures

Integrate Into
the Software

Process

Figure 1.3-1. Measurement Tailoring Process

The final tailoring activity is integrating the measures into the developer’s software
process. The software environment, development approach, and management process
will affect the definition, availability, and utility of the desired measures. Existing
measurement implementations, if any, should be considered for their applicability to
the project information needs identified earlier. The results of this integration are
documented in a project measurement plan. The plan may be formal or informal,
depending on the nature of the project.

The following sections explain each of these tailoring activities in more detail.

3.2 Identify and Prioritize Project Issues

An effective measurement process helps the project manager to be successful. It
provides information on which the project manager can act. This means that
measurement must provide information pertinent to achieving project objectives. An
objective is a cost, schedule, functional quality, or performance requirement that a
project must achieve. Objectives may be directed downward by executive
management or defined by the project manager in conjunction with the prospective
system user. Issues are areas of concern that may impact the achievement of a project
objective. Issues include problems, risks, and the lack of information as described
below:

• Problem - An area of concern that a project is currently experiencing or is
relatively certain to experience. For example, a shortage of staff with the right
skills may be an actual problem that is delaying the project.

Part 1 - The Software Measurement Process

Page 27

• Risk - An area of concern that could occur, but is not certain. A risk is a potential
problem. Risks represent the potential for the realization of unwanted, negative
consequences form a project event. For example, a project plan may be based on
the assumption that a COTS component will be available on a given date. There
is a possibility (probability) that the COTS may be delayed and have some
amount of negative impact on the project.

• Lack of information - An area where the available information is inadequate to
reliably predict project impact. Thus, satisfaction of project objectives is
questionable even if no problems or risks are present. For example, lack of
information about the size of the software to be developed could result in the
project “discovering” that it has more work to do than originally planned.

Identifying something as an issue does not mean that it is a problem. Issues include
areas in which problems are likely to arise but have not yet arisen - areas of risk.
Ideally, issues are identified in anticipation of problems, not just after a problem has
occurred. The PSM approach emphasizes prevention and early detection of risks,
rather than waiting for problems to become critical problems.

Objectives, problems, risks, and lack of information vary from project to project.
They also change over time within a given project. As project issues change, the
measurement process must adapt to continue to provide the information management
needs. Consequently, the tailoring process should be revisited periodically during the
project life cycle.

3.2.1 Identifying Project Issues

Software issues should be initially defined at the outset of the project. These may be
identified by reviewing the results of a formal or informal risk assessment, through an
objective examination of project objectives and constraints, or by relying on past
experience. Risks are a good starting point for the identification of project-specific
issues. Aggressive or unrealistic organizational goals might also be treated as project
issues. All of the available information should be combined to help identify and
prioritize project issues.

Each project issue should be stated in terms that are appropriate for that specific
project. Focus on those aspects of the issue that are most important to the project.
For example, a schedule and progress issue for a COTS-based project is likely to be
stated in terms of integration progress instead of design progress, as would be typical
of a software development project that is comprised of newly developed code.

Part 1 - The Software Measurement Process

Page 28

3.2.2 Mapping Project Issues to Common Software Issues

Experience shows that most software issues can be grouped into issue categories that
are basic or common to almost all projects. The six common software issues are as
follows:

• Schedule and progress - This issue relates to the completion of major milestones
and individual work units. A project that falls behind schedule can usually only
make delivery by eliminating functionality or sacrificing quality.

• Resources and cost - This issue relates to the balance between the work to be
performed and personnel resources assigned to the project. A project that exceeds
the budgeted effort usually can recover only by reducing software functionality or
sacrificing quality.

• Growth and stability - This issue relates to the stability of the functionality or
capability required of the software. It also relates to the volume of software
delivered to provide the required capability. Stability includes changes in scope or
quantity. An increase in software size usually requires increasing the applied
resources or extending the project schedule.

• Product quality - This issue relates to the ability of the delivered software product
to support the user’s needs without failure. Once a poor quality product is
delivered, the burden of making it work usually falls on the sustaining engineering
organization.

• Development performance - This issue relates to the capability of the developer
relative to project needs. A developer with a poor software development process
or low productivity may have difficulty meeting aggressive schedule and cost
objectives. More capable software developers are better able to deal with project
changes.

• Technical adequacy - This issue relates to the viability of the proposed technical
approach. It includes features such as software reuse, use of COTS software and
components, and reliance on advanced software development processes. Cost
increases and schedule delays may result if key elements of the proposed technical
approach are not achieved.

PSM recommends using the six common software issues in two ways. First, the
common issues are used to classify project-specific issues identified via risk analysis
or other means so that they can be mapped into the measurement selection structure
described in Section 3.3. Second, reviewing the common issues helps both the
acquirer and the developer to check that all potential issue areas have been considered.

Part 1 - The Software Measurement Process

Page 29

In the absence of other information, the common issues can be used to initially identify
project issues.

The common software issues defined by PSM serve as a starting point to help manage
the concerns of a particular project. The list is intended to be tailored by each project
to support its unique implementation of the measurement process.

3.2.3 Prioritizing Project Issues

Projects have many software issues. Not all issues are equally important. Issues must
be prioritized to determine where to focus the measurement effort. In general, more
data should be collected and analyzed for the more important issues. For example, a
project that plans to make extensive use of COTS software may be more concerned
with the schedule and progress of COTS software integration than with the quality of
the COTS software. This assumes that the COTS software was selected based on an
evaluation that showed that it met user requirements. On the other hand, a safety-
critical system might have quality at the top of its priority list.

Prioritization can be as simple as a rank ordering of issues in terms of their expected
impact. The ranking should consider the magnitude of known problems, the risk
exposure, and the potential variability in project outcome due to the lack of adequate
information.

Most projects can only afford to track the most important issues. Of course, the
prioritization is subjective. As a result there may be a temptation to reduce
measurement requirements by downgrading the priority of an issue. This must be
guarded against.

Software issues and their priorities are dynamic. Additional issues may be identified
once the project is underway. Also, things that were originally thought to be issues
may be recognized as unimportant. Issues evolve as the project evolves. In particular,
the probability and impact of identified risks may change as the project matures. For
example, the number of software problems is seldom of concern at the start of a
project. Just prior to delivery, however, the number of problems is a key management
and technical driver. Risks must be managed continuously. Thus, the measurement
process has to change to keep pace with changing priorities. When defining a new or
derived issue, remember to consider its priority before deciding to collect any
additional data or regularly track the issue.

Part 1 - The Software Measurement Process

Page 30

3.3 Select and Specify Project Measures

Once the project-specific issues have been identified and prioritized, appropriate
measures must be selected to track them. A measure is a quantification of a
characteristic of a software process or product. Many different measures may apply
to an issue. However, in most cases it is not practical to collect all or even most of the
possible measures for an identified issue. Generally, more measures should be
collected to track the high-priority issues. Identification of the “best” set of measures
for an project depends on a systematic evaluation of the potential measures with
respect to the issues and relevant project characteristics. The measurement set cannot
be pre-defined.

Once the project issues have been identified and prioritized, PSM provides a three-part
measurement selection and specification activity, supported by several flexible
implementation “mechanisms.”

• First, the issues are reviewed to identify and select the measurement category that
provides the type of information required.

• Second, the measures within each selected category are reviewed for applicability
in the specific situation, and appropriate measures are selected.

• Finally, the data requirements and related alternatives are specified for each
selected measure.

The PSM mechanisms help select and define the measures that directly address the
project software issues. These measures serve as a basis for integration into the
developer’s process. The PSM measurement selection and specified mechanisms
include:

� PSM common software issues help to categorize specific project concerns.

� PSM measurement categories are a group of related measures that provide
similar “types” of information about an identified issue.

� PSM measures are measures that have proven to provide the right quantitative
data to effectively address the identified issue.

3.3.1 Measurement Category Selection

A measurement category is a set of related measures. The measures within a category
address related software attributes. They provide similar information and answer

Part 1 - The Software Measurement Process

Page 31

similar questions about an issue. PSM defines one or more measurement categories
for each common issue. Figure 1.3-2 lists the categories for each issue, and shows
typical measures used within each of the categories.

This table and the corresponding detailed tables in Part 3 help to identify the
measurement category or categories that most closely align with the project-specific
issues. For example, if the project-specific issue is “Progress of COTS Software
Integration,” then the Work Unit Progress category is suggested because that issue
involves a question about the progress of a specific activity, such as integration. If the
project-specific issue is “Availability of Qualified Staff,” then the Personnel category
is suggested because that issue concerns not just the amount of effort applied, but the
skill level of the staff.

3.3.2 Selecting Appropriate Measures

Once measurement categories have been selected, specific measures can be identified.
As depicted in Figure 1.3-2, each measurement category contains one or more
measures. The measurement tables in Part 3 help to select the measure that best
provides the desired insight based on both the required information and the project
characteristics. When selecting measures, focus on those that have proven to work
within the project’s application domain. For example, response time is widely used to
measure target computer resource utilization in information systems, while memory
utilization is more widely used in weapons systems. Consider the cost and availability
of each measure with respect to the developer’s software process. Extracting data
from electronic sources usually costs less than manual collection. Also address
measurement requirements related to issues communicated by the overall organization
or oversight authority.

The tables in Part 3 summarize more than 40 different measures with respect to these
criteria. These should be considered only as a starting point. New measures should be
defined and added as appropriate for each individual project.

Part 1 - The Software Measurement Process

Page 32

Software Issues - Categories - Measures Mapping
Issue Category Measure

Schedule and Milestone Performance Milestone Dates
Progress Work Unit Progress Component Status

Requirement Status
Test Case Status
Paths Tested
Problem Report Status
Reviews Completed
Change Request Status

Incremental Capability Build Content - Component
Build Content - Function

Resources and Cost Personnel Effort
Staff Experience
Staff Turnover

Financial Performance Earned Value
Cost

Environment Availability Resource Availability Dates
Resource Utilization

Growth and Stability Product Size and Stability Lines of Code
Components
Words of Memory
Database Size

Functional Size and
Stability

Requirements
Function Points
Change Request Workload

Product Quality Defects Problem Reports
Defect Density
Failure Interval

Complexity Cyclomatic Complexity
Rework Rework Size

Rework Effort
Development Process Maturity Capability Maturity Model Level
Performance Productivity Product Size/Effort Ratio

Functional Size/Effort Ratio
Technical Adequacy Target Computer

Resource Utilization
CPU Utilization
CPU Throughput
I/O Utilization
I/O Throughput
Memory Utilization
Storage Utilization
Response Time

Technical Performance Achieved Accuracy in Requirements
(Concurrent Tasking, Data
Handling, Signal Processing, etc.)

Technology Impacts Quantitative impact of new
technology (NDI Utilization, Size
by Origin, Cycle Time, etc.)

Figure 3.1-1. Mapping Common Software Issues to Measurement
Categories and Measures

Part 1 - The Software Measurement Process

Page 33

 3.3.3 Specifying Data Requirements

During this task, the appropriate level of detail for measurement data collection must
be defined. The frequency and format of data deliveries must also be specified. Most
actual software data will come from the developer. However, the project acquisition
office often produces the initial planning data. The source of the data will affect
choices about the frequency and format of delivery.

In determining the proper level of detail for data to be collected and reported, the
acquisition project office must balance the cost of data collection, data processing, and
analysis against the need for detailed insight into project issues. More detailed data
allows for greater flexibility of analysis in terms of defining new indicators and
localizing the source of potential problems detected with the data. However, a greater
level of detail also implies a greater volume of data and somewhat more cost to the
measurement process. Nevertheless, more detailed data should be sought to track
those issues defined as most important.

3.4 Integrate Measures into the Software Process

Up to this point, the measurement selection activity has largely been driven by “what”
the project manager needs to know as defined by the project issues. The next activity
is to look at “how” the measurement process will actually function within the project
structure. The data readily available within the existing software process may not map
exactly into the ideal measurement requirements as defined thus far.

The measures and data requirements selected in the preceding activity form the basis
for agreement between the acquirer and the developer about the specific data elements
to be provided for analysis. This agreement may be accomplished via a formal
contracting or procurement process, or via a less formal agreement in the case of
internal software projects. The result of this activity is a definitive statement of the
measurement approach to be followed, often documented in a project measurement
plan, or incorporated into the project management or software development plans.

Integrating the project manager’s measurement requirements into the developer’s
process involves three tasks:

• Characterizing the software environment

• Identifying measurement opportunities

• Specifying implementation requirements

Part 1 - The Software Measurement Process

Page 34

During the course of performing these tasks, the developer may propose changes to the
project measurement requirements to better integrate the measures into the software
process. The final result is a plan that incorporates the data requirements based on
both the acquirer’s and the developer’s needs and existing management and technical
processes.

The tasks required to integrate the measurement requirements into the software process
are discussed below.

3.4.1 Characterizing the Software Environment

The developer’s process has a major impact on the cost and effectiveness of the
software measurement process. One basic purpose of the measurement process is to
provide insight into the developer’s software process. It is important that the
measures accurately represent the software process being used and the products being
built. The life-cycle model and product structure must be clearly understood. Other
key factors to consider are software technology, the source of software, such as
COTS, reuse, and newly developed, and management and technical practices.

Whenever possible, the developer’s current practices and existing data collection
mechanisms should be used. Requirements for new measurements should be avoided,
if possible. The project’s Work Breakdown Structure (WBS) should be used as the
basis for initially organizing the measurement structure.

To the extent that the activities of the developer’s process are well-defined, measuring
these activities will provide useful information. An ad-hoc or ill-defined process
makes it difficult to tell exactly what is being measured. The measurement process
should not be used to force process changes on the developer. Giving appropriate
consideration to the developer’s process helps to ensure that useful data is provided
with the lowest impact and cost.

3.4.2 Identifying Measurement Opportunities

Potential candidates for measurement include all the products delivered by the project
and all the software technical and management processes used by the developer. The
acquirer’s processes should also be considered. These products and processes can be
defined and measured at many different levels of detail. During measurement
planning, a high priority should be given to finding and taking advantage of any
measurement mechanisms already operating within the development organization.
This is especially important when implementing measurement on an existing project.

Software problem counts and severities can be obtained from configuration
management databases or defect tracking databases. Counts of hours expended by

Part 1 - The Software Measurement Process

Page 35

activity can be obtained from financial management records. Progress data usually
comes from the detailed work plans maintained by technical managers and team
leaders. Use of a project management tool facilitates data collection.

As a result of characterizing the project environment and identifying measurement
opportunities, changes to the measurement requirements may be proposed. Changes
may be managed by a formal contracting process, by a less formal agreement
mechanism, or by internal policy, depending on the nature of the organizational
relationships within the project.

3.4.3 Specifying Measurement Implementation Requirements

The final task in measurement selection is to define the detailed requirements for
collecting and reporting data. Data definitions are a key part of those requirements.
Developing and disseminating clear definitions of the desired data items help to ensure
consistent data. Even seemingly obvious terms, like lines of code and staff-months of
effort, need to be defined. For example, lines of code may be interpreted to mean all
physical lines, non-comment lines, executable statements, or one of many other
variations. Even the measure of staff-months is ambiguous, since the average number
of hours worked per month varies from organization to organization.

To be used effectively, each measure needs to be explicitly defined. Analysis results
and associated recommendations lose much of their value when there is not a clear
definition of how a software characteristic is described by the measurement data.

The requirements for collecting and reporting data are usually documented in a
software measurement plan. The software measurement plan may be formal or
informal. A formal plan may be produced as a separate document, but is commonly
incorporated into the project’s software management, development, or support plan.
Part 2 provides additional detail on preparing a measurement plan, including a sample
outline.

The measurement plan should be coordinated with both the risk management plan and
financial performance management plan. All significant quantifiable risks should be
reflected in the measurement plan with associated measures. The financial
performance plan should be based on objective information produced by the
measurement process.

3.5 Organizational Software Measurement

Most large projects will require the development of a unique software measurement
plan. However, some organizations may be able to define a software measurement

Part 1 - The Software Measurement Process

Page 36

plan that covers many projects. This implies that a common measurement set can be
defined for the organization. A common measurement set only makes sense for a
group of projects that share the following characteristics:

• similar software issues

• common software processes (standards, practices)

• stable technology (languages, tools, platforms)

• similar application domains

Imposing a standard measurement set in situations where these conditions are not
satisfied may burden individual projects with unnecessary measurement requirements
while missing important project issues that should be tracked.

A common data set or normalization scheme may be necessary for other types of
analysis to support process improvement and business purposes. Although this Guide
focuses on project level analysis, it provides a basis for organizational and executive
level measurement. Recording the characteristics that drive decisions in the
measurement selection activity is important for figuring out how to normalize data for
higher level purposes later.

In addition to the project-specific measurement needs discussed in this Guide, other
users may have valid measurement information needs outside the scope of project
concerns. The project’s measurement process must also address these requirements.
These other users include executive managers performing an oversight function and
software engineering process groups working on process improvement issues. Most of
the data needed by these other users originates at the project level. Getting adequate
data for executive review and process improvement depends on establishing an
effective project-level measurement process.

These other measurement needs can best be integrated into the project measurement
process by approaching them first at the issue level, rather than at the measure level.
Figure 1.3-3 illustrates this procedure. Project specific issues and measures and
organizational issues should be combined into an integrated set of measurement
requirements and information needs. These will include three types of measurement
requirements:

• Organizational requirements are executive level requirements that apply
throughout the organization.

• Recurring project requirements are requirements that most or all projects within
an organization have in common.

Part 1 - The Software Measurement Process

Page 37

• Project specific requirements are those requirements that are unique to a project.

Measures collected in response to the organizational and recurring requirements may
be standardized if all the projects are using similar processes and technologies. Even
if the processes and technologies are different, commonality can be increased by
defining standard definitions for individual data items such as lines of code and hours
of effort. While projects may define different ways of categorizing the lines and hours
for tracking purposes, at least the totals will be comparable.

Project-Specific
Requirements

Organization
Requirements

Recurring
Project
Requirements

Executive
Issues

Project A
Issues

Project B
Issues

Project C
Issues

Project A
Measures

Project B
Measures

Project C
Measures

In
te

gr
at

ed
M

ea
su

re
m

en
t

R
eq

ui
re

m
en

ts
Figure 1.3-3. Measurement Across Multi-Project Organizations

Most organizations require the formal reporting of actual cost and schedule progress
against budget baselines. Large government projects are required to use the Earned
Value methodology for this purpose. Converting measurement results to earned value
is an effective way of normalizing some progress measures for reporting purposes.

Consider the measurement requirements from all sources when developing a project’s
measurement plan. This will enable the measurement process to minimize the
redundancy and inefficiency that can result from multiple data collection efforts.
Focusing on measures and analyses that benefit multiple users helps to maximize the
value of the measurement process. A common organizational software measurement
process helps support all information requirements, but still allows for unique issues to
be addressed.

Part 1 - The Software Measurement Process

Page 38

Part 1 - The Software Measurement Process

Page 39

CHAPTER 4 - APPLYING SOFTWARE MEASURES

This chapter explains how the measurement plan that results from the tailoring process
described in Chapter 3 is applied during the project planning, development, and
sustaining engineering phases of the project life cycle. This chapter discusses the
collection of the data, generation of measurement indicators and reports, analysis of
results, and the use of measurement information to support project management
decisions and actions. Management support and participation throughout these
activities are essential to the success of the measurement process.

4.1 Measurement Application Overview

Figure 1.4-1 shows the major activities by which data is collected and converted into
the information that provides a basis for action by the project manager. This figure
expands upon the apply measures subprocess depicted in Figure 1.2-1. During
measurement application, the specified measures are collected and analyzed to provide
the feedback on the issues needed for effective decision-making. Risk and financial
status must also be considered during decision-making. During this process, questions
may be raised and new issues may be identified, causing the process to iterate.

Data

Project Context
Information

Measurement
Plan

Actions

Information

Questions

Risk Management and
Financial Performance Results

New Issues

Periodic
Assessment

Collect and
Process Data

Analyze
Issues

Make
Decisions

Figure 1.4-1. Measurement Application Process

The following sections discuss the three measurement application activities identified
in Figure 1.4-1.

Part 1 - The Software Measurement Process

Page 40

4.2 Collect and Process Data

Collecting and understanding measurement data is the first activity in analyzing
project issues. Getting good data is the foundation of any measurement process.
Almost all data originates with the software developer, including planned, actual, and
historical data. As explained in Chapter 3, the data collected should reflect the nature
of the software product and the developer’s software process. Be sure to include all
contractors and subcontractors in the data collection effort. The key tasks in collecting
and processing data are accessing the data, verifying the data, and normalizing the
data.

4.2.1 Access Data

Software data comes from many sources. The project’s software development plan,
status reports, and engineering databases are primary sources. The software
development plan typically contains the budgets and schedules against which progress
and expenditures will be compared. Data must be collected from both initial plans and
later replans, including incremental changes to plans. As the project evolves, the
corresponding actual data on problems, progress, size, and effort will become
available.

Data may be collected by the developer more frequently than it is reported to the
acquirer. The most common reporting intervals are monthly for requirements analysis,
design, and implementation, and weekly for integration and test activities. Integration
and test data is typically reported more frequently because the analysis period is
relatively short. When developing the data delivery schedule, remember to allow
adequate time for analysis between data delivery and reporting. The lag between data
analysis and reporting should be as short as possible.

One approach that helps assure timely provision of detailed data is to provide the
acquisition project office with on-line access to the developer’s software engineering
databases that contain the necessary information. For most projects, data will be
reported using a combination of electronic, on-line, and hard-copy methods.

4.2.2 Verify Data

Getting useful measurement results depends on getting good data for the analysis and
reporting process. Data verification must consider both the accuracy of the data as it
is recorded, as well as the fidelity with which it is transmitted.

Data verification is complicated by the fact that some of the assumptions underlying
the measurement process can change during the project. Aggregation structures,

Part 1 - The Software Measurement Process

Page 41

product components, processes, and even definitions of measures may be updated as
the project evolves. Sometimes, estimates and actuals are measured differently.
Consider these possibilities during the data-verification task.

Even valid software engineering data is likely to be “noisy.” Software engineering is a
human-intensive activity; things seldom go exactly as planned. Because performance
varies from week to week, be wary of “actual” data that exactly matches the “plan.”

4.2.3 Normalize Data

During analysis, it may be necessary to combine or compare measurement data from
different activities or from software compnents with different characteristics, such as
language type. In order to combine or compare data, the data must be “normalized.”
Normalizing measurement requires defining conversion rules or models. For example,
to compare the productivity of different developers, it may be necessary to use a model
that takes into account the effect of project schedule and size on productivity.
Normalization has to be performed carefully. Any rules or models used must be
documented and validated with historical data.

All of the data does not need to be reported to the project manager at the detailed level
at which it is received. Consequently, it is often necessary to combine raw data from
low-level components into higher levels. Aggregating data requires defining the
relationships among the measured objects based on defined attributes. For effective
communication to occur, both the developer and project manager must understand and
use the same aggregation and normalization rules.

The data collection and processing activity is actually where insight into the project
issues begins. The availability, consistency, validity, and overall quality of the
measured data provides information that helps to initiate analysis.

4.3 Analyze Issues

During the analysis activity, measurement indicators are generated from the data
collected in the data collection activity as part of a systematic analysis process. This
process results in quantifying the project status relative to the known issues,
calculating estimates to complete, and assessing risk exposure. As shown in Figure
1.4-1, this analysis is based on both measurement and project-context information.
Measurement results cannot usually stand alone. Only the integration of quantitative
and qualitative data produces true project insight. The results of the analysis are the
basis for identifying new issues and taking corrective action with respect to known
issues.

Part 1 - The Software Measurement Process

Page 42

The measurement process must be able to respond quickly to the information needs of
project managers. Typical questions asked by project managers include the following:

• Can I trust the data?

• Is there really a problem?

• How big is the problem?

• What is the scope of the problem?

• What is causing the problem?

• Are there related problems?

• What should I expect to happen?

• What are my alternatives?

• What is the recommended course of action?

• When can I expect to see the results?

The measurement process should generate the answers to these questions.

The credibility and completeness of the analysis process is enhanced when the
analysis follows a repeatable process. Analysis results are more likely to be useful
and the project manager will have a higher degree of confidence in them. PSM
presents the analysis activity from three perspectives: 1) a model of relationships
between issues that helps to guide the analysis, 2) measured indicators used to present
measurement information about issues for analysis, and 3) the types of analyses
conducted. The three types of analysis include estimation, feasibility, and
performance.

4.3.1 Analysis Model

Software issues are not independent. In order to define the relationships between
individual issues, PSM uses a structured “analysis model.” Figure 1.4-2 illustrates the
typical relationships between the PSM common issues. This model helps define
appropriate measurement indicators for the different analysis activities employed in
this part of the measurement application process.

Part 1 - The Software Measurement Process

Page 43

Technical
Adequacy

Development
Performance

Growth and
Stability

Resources
and Cost

Schedule and
Progress

Product
Quality

Figure 1.4-2. Model of Common Software Issue Relationships

The issue relationships in Figure 1.4-2 can be summarized as follows. Most
innovative technical approaches attempt to increase the efficiency of producing the
software required to implement defined functionality. In many cases, this can be
accomplished by reducing the amount of software that has to be produced, by using
COTS components or existing code. If the chosen technical approach does not yield
all of the desired benefit, then more software will have to be developed than planned.
Increases in the size and changes in the functional content of the software usually
result in additional effort. The additional effort leads to schedule delays. Schedule
pressure can cause a product to be delivered that is not fully tested and has
documented problems that have not been corrected. These problems represent rework
that requires additional effort in future releases or during sustaining engineering, thus
requiring additional resources and cost or increasing the size of the code. Developer
performance affects overall cost, progress, and quality. A more capable developer
performs better, other factors being constant.

4.3.2 Software Management Indicators

Software issues usually cannot be measured directly. Through the tailoring process
measures have been associated with each issue. These measures are used to construct
indicators of issue status. The PSM analysis model helps to determine which
measures should be used to construct indicators for different concerns.

An indicator is a measure or combination of measures that provide insight into a
software issue or concept. The indicators discussed in PSM are analysis tools, often
represented as a graph or a table. Indicators can give warnings of potential problems
associated with issues. An important issue may be tracked with several indicators,
based on different measures. Figure 1.4-3 is an example of a measurement indicator.

Part 1 - The Software Measurement Process

Page 44

This indicator contains the planned effort for a project, compared to the actual effort
that has been expended to date.

Effort Allocation

0

20

40

60

80

100

120

140

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

S
ta

ff
M

on
th

s

Plan
Actual

Data as of 30 Jun 97Project: PSM

Figure 1.4-3. Sample Measurement Indicator

The measurement approach advocated in PSM stresses collecting data at a sufficient
level of detail so that many different indicators can be constructed as needed. Such an
approach allows for greater flexibility in analyzing issues and adapting to new issues
as they arise. A measurement process that is based on the periodic delivery of only
pre-defined graphs and tables does not have this flexibility, and constrains analysis
only to pre-defined concerns.

While some measures are closely associated with specific indicators, the PSM concept
of an indicator helps the analyst to combine measures in many different ways.
Selection of a measure does not necessarily determine the indicators that will be
produced from it, since the process is generally dynamic. Part 5 contains examples of
measurement indicators.

4.3.3 Analysis Activities

During each analysis cycle, three types of analyses should be considered as shown in
Figure 1.4-4. Estimation produces projections of the software size, effort, schedule,
and quality required to complete a project. These estimates are the basis of detailed
plans for the project’s activities. Feasibility Analysis deals with the technical
accuracy and realism of plans, estimates, or assumptions associated with an issue.
For example, an assessment of the feasibility of resources and cost for a project must
consider whether the proposed work can be accomplished with the planned resource

Part 1 - The Software Measurement Process

Page 45

allocations. Performance Analysis deals with actual adherence to plans, estimates,
and assumptions associated with an issue. For example, an assessment of the
resources and cost performance of a project should consider whether expenditures
such as personnel effort conform to the plan or how much they deviate from it.

Estimation

Feasibility
Analysis

Performance
Analysis

Schedule and Progress

Resources and Cost

Growth and Stability

Product Quality

Development Performance

Technical Adequacy

Figure 1.4-4. Types of Measurement Analysis

The following subsections discuss estimation, feasibility analysis, and performance
analysis in more detail. Part 4 of the Guide provides detailed descriptions of the three
analysis activities. Part 5 provides sample indicators.

Estimation

The first measurement analysis requirement for most projects typically involves
estimation. The first round of estimation often occurs before the software developer is
selected. These initial estimates support the cost-benefit analysis necessary to justify
the project and to establish its overall funding and schedule commitments. The nature
of software engineering makes early estimates imprecise and requires that estimation
be repeated throughout the project’s life cycle.

Estimates are a common source of ambiguity in software projects. Figure 1.4-5 shows
the relationship between software size and effort for one domain of projects (Putnam,
et al, 1992). This chart shows that the same size of software may require different
amounts of effort. In this example, the effort required to develop a software product
of a specific size (100k) may fall anywhere within the oval-shaped area. Most
estimation models produce point estimates. However, a range for the estimate, like
that shown in Figure 1.4-5, provides more useful information.

Part 1 - The Software Measurement Process

Page 46

Size - Effort
Estimating Relationship

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

S
ta

ff
M

on
th

s

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project: PSM Data as of 31 Mar 98

Figure 1.4-5. Estimating Relationship

Estimation typically involves four basic tasks:

• Selecting an estimation approach (or combination of approaches).

• Mapping the approach to the project’s sequence of software activities and
products, and calibrating associated estimation models with historical data from
the organization.

• Computing estimates of size, effort, schedule, and quality using the approach or
model.

• Comparing the results with project constraints and assumptions to evaluate the
estimate.

Estimates form the foundation for more detailed project planning. Re-estimates should
be performed periodically throughout the project’s life cycle. These typically occur at
major milestones or when significant changes to requirements or project constraints
dictate a planning revision. As the project progresses and more information becomes
available about actual project performance, the accuracy of the estimates should
increase.

Feasibility Analysis

Feasibility analysis should be conducted with respect to an issue during the initial
planning activity and at all subsequent replans. The scope of feasibility analysis

Part 1 - The Software Measurement Process

Page 47

includes both the estimates and the more detailed plans based on the estimates. A
project’s failure may result from an infeasible plan, poor performance, or invalid
estimates. The feasibility of a plan depends on the accuracy of assumptions and data,
as well as the effectiveness of the planning process. Feasibility analysis focuses on the
technical viability of the software project plan. It is a primary input into the risk
management process.

Each part of the project plan, such as size, schedule, and staffing profile, may be
reasonable by itself, but the plan may prove to be infeasible when considered as a
whole. Figure 1.4-6 shows a milestone schedule (Gantt) chart and Figure 1.4-7 shows
staffing profile for the same project. Note the highly-parallel design and
implementation schedule between June and November during an interval of decreasing
staffing. While the overall schedule may be adequate and the overall staffing
sufficient, the allocation of staffing over time does not match the schedule. If this plan
is followed, the project is sure to experience some periods where there is more staff
than needed for the scheduled work and other periods where the staff is insufficient.

Schedule

Activity
Requirements

Design - 1

Design - 2

Design - 3

Implementation - 1

Implementation - 2

Implementation - 3

Integration and Test

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1998

Project: PSM Data as of 31 Mar 98

Figure 1.4-6. Software Development Schedule

Part 1 - The Software Measurement Process

Page 48

Planned Staffing

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
um

be
r

of
 S

ta
ff

Project: PSM Data as of 31 Mar 98

Figure 1.4-7. Software Development Personnel

Performance Analysis

Regardless of its feasibility, once a project has committed to a plan, performance
can be measured against the plan. The project manager must pay close attention to
how well the software development or support effort follows the plan.

Figures 1.4-8 and 1.4-9 show an example of a problem made visible by detecting
inconsistent trends. Figure 1.4-8 shows a design progress indicator. While the
measure of actual design progress appears to be only slightly behind the plan, the
number of open problem reports in Figure 1.4-9 has continued to increase. These open
problem reports represent rework that must be completed before the design activity
can be completed. Thus, the trends in these two measurement indicators are
inconsistent.

Part 1 - The Software Measurement Process

Page 49

Design Progress

0

100

200

300

400

500

600

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Planned Units
Actual Units

Project: PSM Data as of 31 Oct 97

SDR

Figure 1.4-8. Design Progress Indicator

Problem Report Status

0

20

40

60

80

100

120

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Discovered
Closed

Project: PSM Data as of 31 Oct 97

SDR

Figure 1.4-9. Problem Report Status Indicator

Once the existence of a problem has been suggested by an analysis, the problem
should be localized by examining indicators based on more detailed data. In the
example of Figure 1.4-9, the problem report indicator should be generated for each of
the software components within the project. Identifying the specific source of the
problem helps to determine its cause and select appropriate corrective actions.

Part 1 - The Software Measurement Process

Page 50

Additional context information is usually needed to make valid interpretations with
respect to the cause of a problem. For example, noting a discrepancy between the
originally estimated software size and the current estimate (or actual) size does not
provide enough information for management action. The size difference may result
from: 1) poor initial estimates of the size of the system, 2) significant requirements
changes, or 3) changes in the way size is counted. Depending on the cause of the
variance, different actions may be required.

Alternative courses of action should be identified for all known problems.
Measurement assists in making predictions about likely project outcomes given
different scenarios and actions. Current trends can be projected into the future.
Historical data and qualitative experience from similar projects can also be helpful in
evaluating alternatives.

Consider the effect of each alternative on the risk and financial status of the project, as
well as the current problem. An action that addresses a current problem could
increase the risk exposure of the project in other ways. For example, purchasing and
implementing a software productivity aid such as a design tool might lower costs in the
future, but the risk of delays in acquiring, installing, and learning the tool might make
this course of action undesirable in the near-term. Focusing strictly on the current
known problems can force a project into a situation where it can not recover from the
occurrence of a significant risk.

The viability of each proposed course of action also should be examined with respect
to financial performance information. The availability of budget and schedule may
affect the project’s ability to implement the proposed course of action. All of these
sources of information are needed to help the project manager arrive at the optimum
decision within the bounds of project constraints.

4.4 Make Decisions

The purpose of measurement is to help project and technical managers make better
decisions. This last activity in the PSM measurement application process
encompasses three major tasks: 1) reporting measurement information to the decision-
maker, 2) selecting an alternative course of action, and 3) taking appropriate action
based on that information. These tasks are discussed below.

4.4.1 Report Results

The analysis results must be regularly communicated to the project manager and the
entire project team. This communication is normally done via a briefing or report and
in some cases, on-line. The reporting system should promote regular interaction and

Part 1 - The Software Measurement Process

Page 51

objective communication among all participants of the development team. Recognize
that the measurement analysis report or briefing may contain proprietary or sensitive
information. The reporting methodology must therefore include appropriate steps to
protect this information.

If possible, measurement results should be discussed with the appropriate software
development team personnel on a regular basis. This interaction provides an
opportunity to discover events and qualitative information that help explain what is
happening in the data. It is easy to arrive at incorrect conclusions without
communication. Most importantly, measurement should be used for
communication and understanding, not for punishment.

The periodic analysis results should be used to update the project’s risk management
plan. Measurement of actual status and performance levels helps to re-assess the
probability of problem occurrence and magnitude of risks. Quantitative progress
measures also provide a solid basis for reporting and explaining financial performance
in terms such as earned value. All of this information should be presented together to
the decision-maker as a basis for taking action.

4.4.2 Select Alternative

Some of the key information that is reported to the decision maker are the alternative
courses of action available to correct or minimize a problem. During performance
analysis, alternatives were identified and evaluated. The decision maker now needs to
decide on which alternative to choose, or to do nothing and track the problem further.
To support an informed decision, all alternatives should be clearly outlined, and
recommendations based on the projection of the respective outcomes should be made.
It is important that the decision maker understand the ramifications of each alternative,
the expected impact, and when the results of any decision can be expected. A list of
actionable activities should be presented for each alternative.

Different decision makers have distinct preferences on how the measurement results
and the alternative recommendations are formatted and presented. Adjust the
measurement reporting formats so that the data and recommendations are clear to the
decision maker.

4.4.3 Take Action

The use of software measurement on a project does not require any special, additional
management control functions. It does, however, require that basic project
management structures be in place. Measurement complements the existing planning
and control activities, especially risk management and financial performance
management. When management action is deemed appropriate based on measurement

Part 1 - The Software Measurement Process

Page 52

information, it should be implemented via the existing management structure and
contractual or agreement mechanisms.

Measurement helps managers to recognize that a problem exists and to localize its
cause. Identifying the underlying cause and selecting appropriate corrective action
require the application of good management and engineering judgment. Action must
be taken to realize any benefit from measurement.

Once a corrective action is initiated, additional indicators may be defined to assess the
effectiveness of the action taken. Normally there is a delay between the start of a
corrective action and the detection of its effects. Nevertheless, it is important to follow
through to ensure that the desired outcome is realized. In most cases, new indicators
to track actions can be defined using the data that is already being collected.

Part 1 - The Software Measurement Process

Page 53

CHAPTER 5 - IMPLEMENTING A MEASUREMENT PROCESS

The previous chapters describe the software measurement process, including the
tailoring and application of software measures to address specific project issues. A
well-defined measurement process is of little value if it is not properly implemented
within the organization. This chapter addresses how to do this, and describes four key
measurement implementation activities. This chapter also addresses how measurement
information can be used to support overall organizational requirements.

5.1 Measurement Implementation Overview

Implementing a measurement process within an organization is similar to
implementing any new initiative or function. Measurement represents a significant
change in how an organization does business, and the issues and concerns related to
this change must be directly addressed.

There are four key activities which must take place to effectively introduce software
measurement into an organization. Figure 1.5-1 shows how these activities build upon
each other. They are as follows:

• Obtain organizational support - The objective of this activity is to generate
support for software measurement at all levels within the organization.
Management-mandated measurement without organizational buy-in and multi-
level support will seldom succeed. Members of the organization at all levels need
to understand how measurement will directly benefit their projects and their own
work processes.

• Define measurement responsibilities - During this activity, measurement related
responsibilities within the organization are established and assigned. The key
positions generally responsible for software measurement include the
organizational and project managers, the measurement analyst or analysis team,
and other members of the technical and management staff who are involved with
software acquisition and development activities. Clear definitions of who is
responsible for what parts of the measurement process are important to successful
implementation.

• Provide measurement resources - During this activity, the measurement
resources required to implement the measurement process within the organization
are established. These resources include tools and funding for the measurement
effort.

Part 1 - The Software Measurement Process

Page 54

• Initiate the measurement process - During this activity, the focus transitions
from establishing the measurement process to actually applying it within the
context of a software project.

The following sections explain these activities in more detail.

Provide
Resources

Define
Responsibilities

Initiate
Process

Obtain Organizational
Support

Figure 1.5-1. Measurement Implementation Activities

5.2 Obtain Organizational Support

Implementing measurement in an organization often requires a major cultural change.
Fear generally exists that the measurement results will be used improperly to evaluate
individual performance or to arbitrarily rank development organizations. There may
be concern that measurement will highlight problems in a project or in an organization
that were not visible before the measurement process was implemented. For example,
the measurement analysis may show that the software development plan was
unrealistic, or that only a portion of the software functionality will actually be
delivered. These concerns are real, and to overcome them requires an understanding of
measurement, as well as how to use the measurement results properly at all levels
within the organization.

Management support is critical to successfully implement a measurement process.
This support goes beyond the senior managers saying that software measurement is “a
good idea.” Management must take an active and visible interest in the measurement
process. Senior managers must be perceived as supporting the process by providing
adequate resources, asking for data and analyses, and acting on these analyses. The
entire organization will then understand that measurement is important, and begin to

Part 1 - The Software Measurement Process

Page 55

actively support it as well. A measurement process requires enthusiastic leadership at
the highest levels of the organization to make it work.

Many managers first learn about software measurement when some significant
software “event” brings into question the way a project or organization is being
managed. Others learn about it as a result of a policy directive or initiative. Few
managers are first introduced to software measurement as an effective project
management process that can help to achieve project and organizational objectives. In
many cases, management views measurement as “another thing to do” and as
something that will require resources that are already committed. The benefits of
measurement to the organization should be clearly identified.

In addition to management support, measurement has to be adopted and supported at
lower levels in the organization. Most people want to do a good job, and measurement
can help them to do this. Evaluating acquisition alternatives, assessing the feasibility
of proposed software plans, and identifying the key areas of technical concern are all
activities which involve the use of measurement. One of the important aspects of
obtaining support for measurement throughout the organization is to ensure that
everyone understands that the measurement results will be used to support the
organization’s objectives, and not used to evaluate individual performance.

5.3 Define Measurement Responsibilities

The size and structure of each specific organization is directly related to how
measurement responsibility is assigned. How many people are involved, and how the
measurement tasks are actually allocated, vary considerably from organization to
organization. In general, responsibility for implementing the measurement process
takes place at different levels.

The primary responsibility for the measurement process is at the management level. In
many government and industry organizations, two types of managers are involved in
the acquisition and support of software-intensive systems:

• Executive manager - The executive manager, who in many cases is the
government Program Executive Officer (PEO) or business sector manager,
generally has responsibility for an organization that controls more than one
project. The executive manager’s decisions materially affect all of the projects
within the organization. Measurement helps the executive manager determine the
status of individual projects, and make decisions that apply across the
organization.

• Project manager - The project manager has direct responsibility for the success
of a software-intensive project. In most cases, the project manager is the primary

Part 1 - The Software Measurement Process

Page 56

user of the measurement results. This person is responsible for identifying and
managing the software issues and communicating with the developer and senior
levels of executive management. The project manager uses measurement to make
project decisions.

In some organizations, the project manager is also the executive manager. It is the
project manager’s responsibility to ensure that measurement is integrated into the
project. Integration includes all of the activities that make measurement part of the
overall project management and technical processes, including the identification of
resources to support the measurement effort.

While management is responsible for integrating and using measurement within the
organization, the project technical staff is usually assigned the day-to-day tasks related
to tailoring and applying the measures. Generally an individual or team has the
primary responsibility for tailoring the measures, collecting and processing the
measurement data, analyzing the measurement results, and reporting the results to
management.

Depending on the size and scope of the project, the measurement team can consist of a
part-time measurement analyst or a multi-person team. The important thing is to have
the primary measurement responsibility for the project assigned to a specific
individual, and to allow that individual to interface directly with the project
development organization. If a software engineering or measurement Integrated
Product Team (IPT) is established, the measurement analyst or measurement team
should be represented. Above all, the personnel responsible for measurement must be
able to independently arrive at objective answers and alternatives, and be able to
provide results directly to the project decision makers.

Other members of the project technical staff also have responsibility within the
measurement process. Each should understand how the process works and what
information it can provide to them. They should also support measurement analysis
efforts by helping to identify project events that may have an impact on interpreting
the measurement data.

The development organization plays an important role in the measurement process.
Most of the software data used by both the developer and the acquirer comes from the
developer. All users must understand how each measure is defined and what the data
represents. For example, what project Work Breakdown Structure (WBS) elements
are included in the reported software effort data?

The measurement results are most effective when used by the software development
team on a day to day basis. In addition to helping to communicate issues and
solutions, the development team uses the measurement results to identify and correct
problems quickly as a part of their day to day work.

Part 1 - The Software Measurement Process

Page 57

5.4 Provide Measurement Resources

Experience suggests that the measurement process will require from one to five percent
of the total software project cost. The actual cost of a software measurement project
depends on the specific data that is collected, and whether that data already exists in
the developer’s software engineering process. Measurement costs include personnel
and tools, as well as the cost for the developer to assemble and report the data. Most
developers use software data internally to manage their projects. As such, there
should be little additional cost for the data to be provided. If the developer does not
collect software data, there should be some concern about the maturity of the
underlying software development process.

As with any initiative, there are some non-recurring startup costs associated with
implementing a measurement process. These costs, which include both training and
tools, diminish as measurement becomes a day-to-day activity within the organization.
It is important to view the measurement process as a long-term resource within the
organization. It should become self-supporting, saving as much as it costs, within a
relatively short period of time after it is established.

In some organizations, the measurement costs for individual projects can be reduced
by establishing the measurement team as an organizational resource. As long as there
is a primary analyst assigned to work independently on each project, the measurement
team can share resources, tools, and expertise.

5.4.1 Measurement Tools

Once the specific measurement requirements and practices have been established, the
tools used to collect, process, and analyze the data should be identified. On many
smaller projects, the measurement process can be adequately supported using a
personal computer with common off-the-shelf office software. On larger projects, or
on projects that need to implement more advanced analysis techniques, additional
measurement tools are usually required. When deciding what resources are required,
the wrong thing to do is to purchase a specific tool before determining if it supports the
information needs of the project. The types of software issues that need to be
addressed and the characteristics of the measurement process drive the support tool
requirements. No measurement process should ever be implemented around a pre-
defined set of measurement tools.

Several different classes of tools are commonly applied in the measurement
process, as described below. Many of these tools are used by the developer, but
may also be accessed by the project office.

Part 1 - The Software Measurement Process

Page 58

• Database, graphing, and reporting tools manage and store the measurement data
and produce graphical and text-based reports. Commercial personal computer
database applications are generally adequate for most projects. For larger projects
with extensive data management and storage requirements, consideration should
be given to using more powerful tools.

• Software analysis and modeling tools provide enhanced graphics and software
analysis capabilities generally unavailable from databases or spreadsheets. The
category includes software cost estimation models, software reliability models,
statistical analysis tools, and similar applications. These tools can be extremely
valuable when implemented as part of the overall measurement process.

• Measurement application tools are specifically designed to help implement a
measurement process and support user interaction at all levels of the organization
by providing real-time access to both measurement data and analysis results.
They are useful for summarizing and providing measurement information at the
management level.

• Schedule and project management tools assist in project scheduling, progress
tracking, and critical path analysis. Some tools in this category can also track
resource allocations and expenditures for identified activities.

• Financial management tools help to collect and store data related to labor and
funds expenditures. Some tools in this category include cost accounting and
earned value functions. In some cases, existing financial management systems
may not provide software specific data at an adequate level of detail. These
systems may be difficult to modify.

• Software product analysis tools generate software product related data through
automatic analysis of specific software products. Examples include software
complexity analyzers, software size counting utilities, and software test coverage
analyzers.

• Software data collection tools automatically extract software measurement data
from systems which support the developer’s software process. They can be
commercial or locally developed utilities which access the developer’s CASE
tools, configuration management tools, and other software related systems. They
are useful for providing the project office with direct access to the developer’s
measurement data.

General guidelines for selecting tools to support the measurement process include the
following:

Part 1 - The Software Measurement Process

Page 59

• Select tools that support the measurement process as tailored to meet specific
project needs. Do not build a process around the tools.

• Evaluate tools that may already be available within the organization.

• Select tools that automate as much of the measurement process as possible.
Automated data collection, data processing, analysis, and reporting tools can
considerably improve the efficiency of the measurement process.

• Work closely with the developer to coordinate measurement tool selection and
implementation, especially with respect to electronic data transfer.

• Select tools that simplify importing and exporting data between different formats.

• Select tools that run on a common platform.

On most projects, some manual data entry will usually be required. This should be
kept to a minimum. It is usually more cost effective to implement commercially-
available tools and applications instead of developing them in-house. Data transfer
utilities that provide direct access to the developer’s measurement data, in many cases,
are unique to each project. It is usually more cost effective to implement these
utilities, rather than relying on manual data transfer and entry.

5.4.2 Measurement Training

Personnel at all levels of the organization require appropriate software measurement
training. Figure 1.5-2 summarizes the general training requirements for different
personnel in the project organization.

Project managers require a good foundation in the basic concepts of software
engineering and software measurement. They need to understand the capabilities and
limitations of the measurement process and how it can help them meet their objectives.

Job Function
Project

Manager
Technical

Managers &
Engineers

Measurement
Analysis Team

Members

Measurement
Training

Requirement
• • • Software Engineering

• • • Measurement Overview

• • Data Collection and
Management

• Measurement Analysis

Figure 1.5-2. Measurement Training Requirements for Project Personnel

Part 1 - The Software Measurement Process

Page 60

Project office technical managers and engineers require training in the basic concepts
of software engineering and measurement. They must understand how the data will be
used within the project organization and how measurement will impact their own work.

Members of the measurement analysis team need appropriate training and experience
in software engineering, the measurement process, and in specific software
measurement disciplines. Software engineering expertise is critical to success. It
provides the basis for interpreting and analyzing the data. Project personnel assigned
to the analysis team should understand the activities and products inherent to the
software development process, and be able to relate project software issues to specific
measures and analysis activities. Software estimation and modeling skills, and
statistical analysis experience is required for more advanced analysis.

5.5 Initiate the Measurement Process

On most projects, some data collection and analysis occurs immediately after the
decision is made to implement a measurement process. It is not unusual for all of the
implementation activities to be taking place concurrently. A key requirement is to
show how the measurement process can help address even the basic software issues
and start to answer the project manager’s questions. Even if the project is large,
initially implementing a few key measures to address the highest priority issues will
provide important information that was not previously available.

One of the most important things to do is to establish an interface between the project
office and the developer with respect to software measurement. Once established, this
interface will become one of the most important tools in the measurement process.
Direct access to the developer allows the measurement analyst to freely address data
issues, and allows analysis feedback to be provided to the developer at the working
level. In many instances, the acquirer - developer interface can be established as part
of an IPT.

Just establishing a measurement process will not have an immediate impact on the
project. As the measurement process is implemented, the measurement results will
need to be “marketed” within the organization. At this point in time it is especially
important to use the measurement results correctly. The data should be well defined,
the analysis should be accurate, and the developer should have an opportunity to
address the results.

The measurement information and analysis results should be made available to the
entire project team, including both the acquisition and development organization.
Discussion of the measurement results within the project team should focus on how the
measurement results reflect what is actually happening on the project, and if new
issues identified by the analysis are valid. The developer is important to the

Part 1 - The Software Measurement Process

Page 61

measurement process. If the developer is punished for poor measurement results, then
the flow of data may be impeded or manipulated, resulting in a loss of project insight
and communication.

The measurement process tends to impose a discipline on project software
management activities. If the measurement process is properly implemented, the
results will be used throughout the organization. It will provide insight into the project
issues and help management to make informed software decisions.

5.6 Using the Measurement Results

The primary user of software measurement information is the individual software
project team. The team includes the acquisition project office and technical support
organizations, as well as the software developer and associated development
organizations. Other organizations, particularly those with responsibility within the
acquisition structure, have a need for information that is provided by the project’s
measurement process. Each of these information needs is somewhat unique, because
each level within the organization has a different role with respect to business and
technical management and must address different issues and questions. Figure 1.5-3
summarizes the typical measurement information requirements which exist across a
large organization. The basis for addressing the requirements at the organizational
and enterprise levels is the data and analysis results from the individual project level.
These are aggregated using a common issue-driven measurement process to address
cross-project issues and objectives. When fully implemented, a common integrated
risk management approach is established to assess and manage risk at all
organizational levels using measurement data.

Enterprise
Measurement

Organizational
Measurement

Project/Program
Measurement

Integrated
Risk

Management

Issue Driven
Measurement

Process• Project Planning and Tracking
• Risk and Financial Management
• Tradeoff Analysis
• Objective Decision Making

• Process Improvement
• Planning Guidelines
• Performance Based Acquisition
• Organizational Norms

• Normative Performance Baselines
• Performance Measurement
• Technical and Business Policy
• Investment Analysis

Figure 1.5-3. Multi-Level Software Measurement Information Requirements

Part 1 - The Software Measurement Process

Page 62

The project level requirements are significant. Since the project manager is required to
provide measurement results outside of the project team, all organizational levels must
understand how to correctly use and interpret them.

Before using the measurement results, all organizations should have a clear
understanding of how to interpret the information with respect to a given project. This
requires all users to understand what the data represents, how the analysis was
conducted, and how the measurement information relates to the project. All users
should understand the measurement process, especially its capabilities and limitations.
The objective of the project measurement process, even at higher levels of the
organization, remains the identification and management of software issues, not to
grade or punish the project organizations or individual developers.

Measurement can be a powerful tool, but it can also be misused. Using measurement
results to compare and rank different projects with respect to performance is a primary
example of misuse. Software measurement is different for every project. The
measures used and how they are defined are different, as are the overall technical and
management processes that the measures represent. Even though there is a need to
quantify project performance in a standard manner, in most cases a comparison of a
number of small projects using the software measurement results will be invalid.

5.6.1 Project Development Viewpoint

The project development team has two primary decision-makers that need
measurement information: the acquisition project manager and the development project
manager.

These managers use the measurement information in three ways:

• To analyze options and trade-offs

• To monitor project status and make project decisions

• To communicate project status

Integrated Product and Process Development (IPPD), implemented through Integrated
Product Teams (IPTs), or the commercial equivalent of concurrent engineering,
provides a natural mechanism for using measurement information. The purpose of the
IPT is to make team decisions based on timely and objective data from the entire team,
and software measurement information specifically supports this objective.
Measurement information provides a basis for continuous feedback and discussion
between the acquirer and the developer.

One of the most important uses of measurement at the project level is to help define
realistic software plans. The measurement process helps to identify if a project is not

Part 1 - The Software Measurement Process

Page 63

tracking to plan. In many cases this is due to the plan being unrealistic. Using the
measurement information to trade off and manage software cost, schedule, capability
objectives, and constraints helps establish achievable goals for the development project
team. At a minimum, the measurement information can be used to objectively identify
the key constraints, even if they can not be materially changed.

5.6.2 Executive Management Viewpoint

There are many uses of the measurement information outside of the project
organization. One of the most important uses is to satisfy executive management
reporting requirements. Software measurement can help in reporting the overall status
of the project. Objective data gives external organizations confidence that the status of
the project is accurately represented. Measurement information also assists the
government project manager to coordinate with other joint or inter-related projects,
particularly on issues such as schedule. It also shows the manager how the critical
software project is managed and helps to determine the status of the software with
respect to readiness for operational test and delivery. Justifying decisions is easier
when based on a repeatable process that uses measurement data. When executive
management questions why a course of action was selected, the project manager can
pro-actively and objectively defend this decision.

Oversight organizations have special information needs. Using measurement to
support oversight requirements is challenging, because the measurement results must
be conveyed within the technical and management context of the software effort.
Measurement can help by providing objective data that clearly relates the project’s
status. Insightful analyses can help in understanding the type and criticality of the
issues a project faces. More importantly, the measurement information can lead
oversight organizations to ask the right questions.

Comments and direction from all organizational levels should be fed back to the
project measurement process. If there are upper-level concerns about a particular
software issue, measurement can be used at the project level to address it.

5.6.3 Process Improvement Viewpoint

Software measurement is also used outside of the project organization to support
software process improvement. Software Engineering Process Groups (SEPG) in both
the acquisition and developer organizations use the measurement information to help
identify candidate areas for process improvement activities. Measurement also helps
to evaluate the effects of process changes across an organization. Without
measurement, an organization can have little confidence that it is improving.

Part 1 - The Software Measurement Process

Page 64

5.6.4 Team Viewpoint

Experience clearly shows that defining and implementing unilateral measurement
requirements often prevents the implementation of a successful measurement process.
This occurs if the requirements are from an acquisition manager to a developer, or
between different levels in the same organization. All responsible organizations should
participate in identifying software issues, selecting and specifying the appropriate
measures, independently analyzing the data, openly communicating the results, and
taking appropriate action.

Part 1 - The Software Measurement Process

Page 65

5.7 Lessons Learned

Figure 1.5-4 summarizes some of the important lessons learned in getting a
measurement process started. Figure 1.5-5 provides lessons learned with respect to
using the measurement results.

Lessons Learned
Getting Started

Ensure that everyone in the organization understands both the capabilities and
limitations of the measurement process. Briefings or training should be provided.

Start small. Implement only a few measures to address key issues and show how
the measurement results support both project and higher level management
objectives.

Ensure that only the required measures are implemented, based on the issues
and objectives of the organization. Do not collect data that is not needed. The
measurement process must be cost effective to succeed.

Assign a key individual to implement the measurement process. This
“measurement analyst” should be an integral part of the software project team
and should act as the primary interface with the developer with respect to
software measurement. This may not be a full time job or small projects.

The project manager should not incur significant costs for the developer to collect
software data. The unavailability of data may indicate a low level of maturity in
the developer’s software process.

The measurement process may initially be implemented with basic, commercially
available database, spreadsheet, word processing, and presentation graphics
applications. More advanced tools can be added as required.

All users at all levels must understand what the measurement data represents.
This understanding is vital to the proper interpretation of the measurement
analysis results.

Figure 1.5-4. Getting Started Lessons Learned

Part 1 - The Software Measurement Process

Page 66

Lessons Learned
Using Measurement Results

Do not allow anyone in the organization to use measurement to evaluate
individual or workgroup performance.

Make the measurement data and information available to everyone in the
organization. If the information is valid, people will find a way to use it.

Do something early. A considerable amount of meaningful analysis can be
performed with a minimal amount of data. Do not wait until all of the data is
available to apply it.

Different levels within the same organization have different information needs.
Executive managers may make investment decisions with respect to software
process technology and tools. Project managers make decisions about specific
technologies and resources to best satisfy project objectives. Organizational
issues and objectives do not always equate to those of a specific project.

Measurement should be made an integral part of the project or organization.
Measurement should support the existing management and technical processes.
Measurement should not be treated as an “add on” within the organization.

The project manager must be at least willing to listen to “bad news” resulting from
the measurement analysis. Not every analysis result requires action. In some
cases the recommended action is not feasible. Measurement is intended to help
the project manager make a decision, not to make an automatic decision.

Management should not try to “influence” the measurement results before they
are reported. They should, however, understand how the reported results were
achieved, and what they mean with respect to the associated software issues.

Pro-actively use the measurement information to report project status.

Figure 1.5-5. Using Measurement Results Lessons Learned

PSMPSMPSMPSM
TAILORING SOFTWARE
MEASURES

Part 2

Part 2 – Tailoring Software Measures

Page 68

Part 2 – Tailoring Software Measures

Page 69

TAILORING SOFTWARE MEASURES

Part 1 of the Guide described the measurement tailoring portion of the PSM
measurement process. This part of the Guide contains detailed guidance for
implementing the tailoring activities to support the information needs of a specific
project.

Part 2 of the Guide is organized into five chapters:

• Chapter 1, Measurement Tailoring Overview - provides an overview of the
tailoring process.

• Chapter 2, Identify and Prioritize Project Issues - explains how project-specific
issues are identified, organized, and prioritized.

• Chapter 3, Select and Specify Project Measures - explains how measures are
selected to address project issues.

• Chapter 4, Integrate Measures Into the Software Process - explains how the
collection and analysis of data for the selected measures is integrated into the
developer’s software process.

• Chapter 5, Measurement Tailoring Example - illustrates an implementation of
the measurement tailoring process in a typical project scenario.

Part 2 – Tailoring Software Measures

Page 70

Part 2 – Tailoring Software Measures

Page 71

TABLE OF CONTENTS

CHAPTER 1 – MEASUREMENT TAILORING OVERVIEW73

CHAPTER 2 – IDENTIFY AND PRIORITIZE PROJECT ISSUES.......................75

2.1 Identify Project-Specific Issues ..76

2.1.1 Project Issues and Objectives..76

2.1.2 Issue Identification.. .77

2.1.3 Risk Management ...78

2.2 Map Project Issues to Common Issues..79

2.2.1 Prioritize Project Issues ...80

CHAPTER 3 - SELECT AND SPECIFY PROJECT MEASURES.......................83

3.1 Measurement Selection Mechanisms...83

3.2 Select the Measurement Categories...85

3.3 Select the Applicable Measures..87

3.4 Specify the Data Requirements ..89

3.4.1 Attributes...89

3.4.2 Aggregation Structure..90

3.4.3 Level of Detail ...92

3.5 Selecting and Specifying Measures for Existing Projects93

CHAPTER 4 - INTEGRATE MEASURES INTO THE SOFTWARE PROCESS95

4.1 Characterize the Software Environment...96

4.2 Identify Measurement Opportunities ..97

4.3 Specify Measurement Implementation Requirements99

4.3.1 General Implementation Requirements ...100

4.3.2 Project Measurement Plan ..102

4.3.3 Organizational Measurement Plan...104

Part 2 – Tailoring Software Measures

Page 72

CHAPTER 5 - MEASUREMENT TAILORING EXAMPLE 107

5.1 Project Scenario .. 107

5.2 Identify and Prioritize Project Issues ... 108

5.3 Select and Specify Project Measures .. 109

5.4 Integrate Into the Software Process .. 110

Part 2 – Tailoring Software Measures

Page 73

CHAPTER 1 – MEASUREMENT TAILORING OVERVIEW

As described in Part 1 of the Guide, PSM provides a systematic method for identifying
project issues, selecting and specifying measures, and integrating them into the
developer’s software process. The objective of the measurement tailoring process is to
define the measures that provide the greatest insight into project issues at the lowest
cost. The PSM tailoring approach focuses effort and resources on getting the most
important project information first.

Figure 2.1-1 illustrates the measurement tailoring process. Project objectives and
issues drive the entire measurement process. Issues are real or potential obstacles to
the achievement of project objectives. The PSM tailoring process begins with
identifying and prioritizing project-specific issues. Issues are derived from project-
context information, management experience, and risk assessment results. Priorities
are assigned to each issue to establish its relative importance as a factor in selecting
appropriate measures.

Software
Process
Characteristics

Proposed
Changes

Proposed
Changes

Project Information and
Risk Assessment Results

Measurement
Plan

New
Issues

Identify and
Prioritize

Project Issues

Select and
Specify Project

Measures

Integrate Into
the Software

Process

Figure 2.1-1. Measurement Tailoring Process

The second tailoring activity is selecting appropriate measures to address the project-
specific issues. The selection activity employs a PSM defined framework that maps
common software issues to measurement categories to measures. Detailed tables in
Part 3 of the Guide provide criteria for making these selections. These selections
result in measurement data requirements that can be incorporated into a Request for
Proposal. These initial data requirements are refined in the final tailoring activity
based on the developer’s process.

Part 2 – Tailoring Software Measures

Page 74

The final tailoring activity is integrating the measures into the developer’s software
process. The suitability of the selected measures in the context of the developer’s
software process and overall technical approach must be considered. Measurement
requirements should not be used to change the developer’s software process, but to
gain insight into it. When implementing measurement on an existing project, special
consideration should be given to existing data sources and ongoing measurement
activities.

The results of the tailoring process are documented in a project measurement plan.
The plan may be formal or informal, depending on the nature of the project and the
relationship between the developer and the project office. The developer’s proposed
measurement approach may also be a factor in source selection.

Figure 2.1-1 shows that the tailoring process is iterative. New issues may be
discovered or refinements may be proposed in the course of examining the developer’s
process. Alternative measures may be proposed to satisfy the project office’s
information needs while minimizing cost. Tailoring may also occur after the initial
software measurement plan has been developed. New issues and new opportunities for
measurement may be discovered as the project matures. Previously identified issues
may decrease in importance.

The PSM tailoring guidance focuses on selecting the “best” measures to address the
identified software issues. Each measure is initially aligned with a single issue to help
simplify the selection process. However, most measures actually are used in
conjunction with others to provide insight into a wide set of project issues. The use of
multiple measures and the relationship of typical software project issues are discussed
in Part 4.

The following chapters describe each of the three tailoring activities in more detail.

Part 2 – Tailoring Software Measures

Page 75

CHAPTER 2 – IDENTIFY AND PRIORITIZE PROJECT ISSUES

An effective measurement process helps the project manager to recognize and deal
with problems and risks that might prevent the project from being successful. PSM
refers to these obstacles as issues. The PSM tailoring process begins with identifying
project-specific issues.

The shaded area of Figure 2.2-1 shows the detailed tasks that comprise the
identification and prioritization of project issues. First, potential issues are identified
using all available project information. This task can be either formal or informal, and
should address the concerns of all organizations involved in the project. The results
from the project’s risk assessment process should also be integrated into the issue
identification task. Next, the identified project issues are mapped to the PSM common
software issues. This mapping of project issues to the common issues helps in
selecting appropriate measures for each issue from the tables in Part 3 of the Guide.
The PSM tables are only a starting point. New or revised issues and measures can be
defined to best support the unique aspects of each project. Finally, the project issues
are prioritized. The priority assigned determines the emphasis placed on measuring
and tracking the issue through the measurement process.

Project
Information

Prioritized
Issues

New
Issues

Proposed
Changes

Risk Management
Plan

Risks

Risk
Identification

Risk
Analysis

Risk
Prioritization

Risk
Planning

Identify
Issues

Issue
Prioritization

Issue
Mapping

Figure 2.2-1. Identify and Prioritize Project Issues

These tasks and the interface to the risk assessment process are described in more
detail in the following subsections.

Part 2 – Tailoring Software Measures

Page 76

2.1 Identify Project-Specific Issues

In order to identify project-specific issues it is necessary to understand what issues are
and how they are defined. As indicated in Figure 2.2-1, risk assessment activities are
key contributors to issue identification. A formal risk assessment process is not,
however, required to identify a valid set of project software issues.

2.1.1 Project Issues and Objectives

Most projects begin with objectives. These objectives typically are defined in terms of
budgets allocated, scheduled delivery milestones, required quality levels, business or
mission performance targets, or overall system capability. Project success is based on
achieving the defined objectives.

Objectives may be directed downward by executive management or defined by the
project manager in conjunction with the prospective system user. Corporate and
government commitments often make adjustments to project objectives difficult once
the project has begun.

Issues are areas of concern that may impact the achievement of a project objective.
Issues include problems, risks and lack of information. These terms are summarized
below:

• A problem is an area of concern that a project is currently experiencing or is
relatively certain to experience.

• A risk is an area of concern that could occur, but is not certain.

• A lack of information is an area where the available information is inadequate to
reliably predict project impact.

Identifying something as an issue does not necessarily mean that it is a problem. In
fact, thorough identification of issues and careful tracking minimizes the potential for
serious problems that could negatively impact project success.

In addition to issues identified at the start of the project, new issues may also arise as
the project progresses. New or evolving requirements, changes in technology, and
other factors usually result in the identification of derived issues as the project
progresses. Consequently, the tailoring process almost always needs to be revisited
periodically during the project life cycle.

Part 2 – Tailoring Software Measures

Page 77

2.1.2 Issue Identification

Because the concept of an issue is so broadly defined, many sources of information
must be used to ensure that a comprehensive set of issues is defined. Useful sources of
information to consider when identifying software issues include the following:

• Risk assessments - The results of project technical and management risk
assessments should always be considered in identifying project-specific issues.
Risk assessment may point to potential requirements, technology, process, cost,
and schedule issues. Risks may be identified informally in the absence of a
structured risk management process.

• Project constraints and assumptions - The project plan is usually based on many
assumptions, such as the performance of the software developer or the availability
of test facilities. Lack of information associated with effort and schedule
estimates should be treated as issues. Moreover, schedules and budgets may have
inflexible constraints. If deviations from these constraints could threaten project
success, then these areas should be identified as issues.

• Leveraged software technologies - Project success may depend on the expected
benefits of a leveraging software technology such as the use of COTS software
components, common domain architectures, or advanced programming languages.
If meeting project objectives depends on obtaining the benefits of specific software
technologies, then the effectiveness of these technologies should be identified as an
issue. A thorough risk assessment would expose this type of issue.

• Product acceptance criteria - The user may impose stringent milestone or final
acceptance criteria on the system to be delivered. If there is significant doubt
about the system’s capability to meet defined acceptance criteria, advertised
objectives, or other external criteria, then satisfaction of these criteria should be
identified as an issue.

• External requirements - Many software issues are related to requirements and
concerns which are external to the project. For example, the need to address
performance measurement, oversight, operational test readiness, or milestone
decision information requirements may require that certain issues be identified and
tracked within a project. Aggressive or unrealistic organizational goals might also
be treated as project issues.

• Experience - The manager’s and developer’s experience with similar past projects
may suggest potential problem areas that should be identified as issues.

Each project-specific issue should be stated in terms that are appropriate for that
project. Focus on those aspects of the issue that are most important to the project.

Part 2 – Tailoring Software Measures

Page 78

For example, a schedule or progress issue for a software maintenance release would
probably be stated in terms of individual change development and integration progress.
Productivity would typically be more of a concern for a software development project.

Issue identification is likely to be more complete if those organizations with a
significant stake in the project’s outcome are included in the identification process. A
joint identification process in which the user, project office, and software developer
participate can be an effective way to quickly elicit issues and to reach consensus on
their priorities. Broad participation also helps build commitment to the resulting
measurement process.

The risk identification activity should consider project plans, risk assessment results,
and estimation results as sources of issues, as well as the experience of the
participants. In the absence of other information, the six PSM common software
issues discussed in Chapter 2.2 can be used to stimulate thinking about project-
specific issues. While these common software issues apply to all projects, their exact
nature and priority are likely to be specific to each project.

2.1.3 Risk Management

Risk management is a separate discipline that is instrumental to realizing success on a
software-intensive project. The risk management process is implemented in parallel
with the software measurement process, and interfaces with it directly. Risk
management consists of two primary activities: risk assessment and risk management.
Risk assessment helps to identify, analyze, and prioritize project risks. Risk
management focuses on the planning, monitoring, and controlling of identified project
risks. Both activities work in conjunction with the measurement process.

The risk assessment process is closely aligned with measurement tailoring. As
depicted in Figure 2.2-1, risk assessment delivers formally defined and prioritized risk
information into the measurement tailoring process, and specifically supports project
issue identification. Risk assessment may point to potential issues with requirements,
technology, process, cost, or schedule. Even if a formal risk assessment has not been
performed, issues still can be identified. The analyst should also understand that not
all risks are quantifiable and that not all issues are risks. Therefore, risk techniques
alone may not be adequate to effectively tailoring a measurement process.

The results of a risk assessment feed into the issue identification task discussed in
Section 2.1.2. The risk assessment results typically include a list of risk items that are
quantified in terms of their significance. Two dimensions for risk quantification are:

• Probability - How likely is it that a risk will result in a problem?

Part 2 – Tailoring Software Measures

Page 79

• Impact - How much impact is the potential problem likely to have on project
success?

The numeric product of probability and impact input is commonly referred to as risk
exposure, and this is used to help prioritize the identified risks.

Risk assessment results are a primary input to the project risk management plan. It is
important to understand the behavior of project risks. Overall exposure of a given risk
to the project can change based on when it is expected to occur and where it is
expected to be applicable within the project organization. Identified project risks tend
to change over time, and are influenced by project events.

Risk management and measurement are synergistic. Both disciplines emphasize the
prevention and early detection of problems rather than waiting for problems to become
critical. The risk management process helps to identify and prioritize software issues.
The measurement process helps to quantify the likeliness of a risk occurring and the
amount of potential impact. Risk management usually addresses more issues than
those that can be quantified using measurement. For example, environmental and
political risks are included in the risk management process, but are not generally
relevant with respect to software measurement.

2.2 Map Project Issues to Common Issues

Experience shows that most project-specific software issues can be grouped into issue
categories that are basic or common to almost all projects. These common software
issues represent key software concerns that must be managed on a day-to-day basis by
the project manager.

The six common software issues are as follows:

• Schedule and Progress - This issue relates to the completion of major milestones
and individual work units. A project that falls behind schedule can usually only
make delivery by eliminating functionality or sacrificing quality.

• Resources and Cost - This issue relates to the balance between the work to be
performed and personnel resources assigned to the project. A project that exceeds
the budgeted effort usually can recover only by reducing software functionality or
sacrificing quality.

• Growth and Stability - This issue relates to the stability of the functionality or
capability required of the software. It also relates to the volume of software
delivered to provide the required capability. Stability includes changes in scope or

Part 2 – Tailoring Software Measures

Page 80

quantity. An increase in software size usually requires increasing the applied
resources or extending the project schedule.

• Product Quality - This issue relates to the ability of the delivered software
product to support the user’s needs without failure. Once a poor quality product
is delivered, the burden of making it work usually falls on the sustaining
engineering organization.

• Development Performance - This issue relates to the capability of the developer
relative to project needs. A developer with a poor software development process
or low productivity may have difficulty meeting aggressive project schedule and
cost objectives.

• Technical Adequacy - This issue relates to the viability of the proposed technical
approach. It includes features such as software reuse, use of COTS software
components, reliance on advanced software development processes, and
implementation of common software architectures. Cost increases and schedule
delays may result if key elements of the proposed technical approach are not
achieved.

Common software issues help to simplify the selection of appropriate software
measures to address project-specific issues. This is accomplished by allocating each
project-specific issue to one of the six common issues, then using the measurement
selection information provided in Chapter 3. This information traces the common
issues to defined measurement categories to individual software measures. Grouping
related project-specific issues together also helps in prioritization. The groups make it
easy to recognize problem areas associated with multiple issues.

Some project-specific issues may not map to a common software issue. In these cases,
mapping to common issues cannot be accomplished. Measures for these issues are
defined through the individual application of the general principles that are defined in
this Guide.

2.2.1 Prioritize Project Issues

Software-intensive projects typically have many issues. In order to ensure that the
measurement process focuses on the issues that have the greatest impact on meeting
defined project objectives, the issues must be prioritized. There are several ways to do
this, all of which include ordering the issues using well-defined criteria, and
establishing consensus within the project organization for the prioritization results.

Part 2 – Tailoring Software Measures

Page 81

The easiest method of prioritizing the identified software issues is to order them in
terms of their projected impact on project objectives. This can be based on the
subjective rankings of the project team participants, or the issues can be assigned
numeric weights based on the relative impact each is expected to have on project
success. The most important consideration is that all participants agree with the final
prioritization. In addition to the impact of each individual issue, other factors which
should be taken into account include: 1) whether or not the issue is already impacting
the project, 2) the relationship of the issue in question to others in the prioritized issue
set, and 3) the visibility of the issue within the overall project structure.

Issue prioritization can also be based on a more quantitative approach that is similar to
calculating risk exposure in the risk assessment process. In this approach, the
identified issues are each subjectively ranked in terms of overall project impact and
probability of occurrence, and numeric weights are assigned to each factor. The
impact and probability weights are then multiplied, and the issues are ordered based on
the total exposure results. Figure 2.2-2 is an example of this approach.

Probability of
Occurrence

Relative
Impact

Project
ExposureSoftware Issues

Aggressive Schedule
Budget Constraints
Unstable Requirements
Staff Turnover
Staff Experience
Changing Mission
Critical Dependencies
Reliability Requirements
Concurrent Activities
COTS Performance
Questionable Size Estimates

1.0
1.0
1.0
1.0
1.0
0.7
0.5
1.0
1.0
0.2
1.0

10.0
10.0
8.0
6.0
5.0
4.2
3.5
3.0
2.0
1.8
1.0

10
10
8
6
5
6
7
3
2
9
1

Figure 2.2-2. Quantitative Issue Prioritization

In this example, eleven project-specific software issues have been identified. The
probability of occurrence (expressed on a scale of 0 to 1) and the relative project
impact (estimated on a relative scale of 1 to 10) have been assigned by the project
team participants, and the overall project exposure for each issue has been calculated.
The prioritization results clearly indicate that the issues of aggressive schedule,
constrained budget, and unstable requirements are of the most concern to the project
team. As such, the measurement process should be focused to address these issues
first.

The prioritization results also show a correlation between many of the identified
issues. Staff turnover and staff experience, are ranked similarly, and indicate a
common concern within the project team. Of course the amount of turnover is directly
related to the amount of technical experience available to the project. Looking at the

Part 2 – Tailoring Software Measures

Page 82

probability assigned to the staff turnover issue, it is clear that this is a problem that the
project is already experiencing or fully expects to experience. The software issues are
defined as they are understood by the project team.

Instead of “borrowing” prioritization techniques from risk management, as shown in
the above example, the actual results from a formal risk assessment can be used to
drive the issue prioritization task. This is, of course, the preferred approach for those
projects that have implemented a formal risk management process. It is important to
remember, however, that most risk management processes are implemented at the
system or project level, and some risks are not “measurable.” When inputs from a
formal risk management process are used to drive issue prioritization, information is
automatically available to prioritize new issues and update the priority if existing
issues.

No matter how the issues are prioritized, similar issues should be grouped. This
makes it easier to select measures to address multiple issues. Remember that the
prioritization of the project issues is dynamic. What needs to be measured changes as
the activities and products of the software process change over the project life cycle,
and as new objectives or requirements are defined external to the project.

Part 2 – Tailoring Software Measures

Page 83

CHAPTER 3 - SELECT AND SPECIFY PROJECT MEASURES

This chapter explains the activity in the PSM tailoring process that helps select the
best set of measures to address the identified project issues. Since every project is
described by a unique set of issues, each project’s measurement needs are also unique.

The tasks in the measurement selection activity are depicted in Figure 2.3-1. These
tasks include identifying appropriate measurement categories for the identified issues,
selecting the most appropriate measures within the categories, and specifying data
requirements so that the measures can be defined and implemented. These tasks are
discussed in more detail in the following sections.

Prioritized
Project Issues

Data
Requirements

Proposed
Changes

Select
Measurement

Category

Select
Applicable
Measures

Specific Data
Requirements

Figure 2.3-1. Measurement Selection and Specification

Although measurement selection is driven primarily by the issues that must be
addressed, the overall characteristics of the project and its software development
approach also should be taken into consideration. The types of graphs in reports
(measured indicators) expected to be produced during analysis also affect
measurement choices. Anticipating the types of graphs and reports that will be needed
helps to define the measures and data attributes that are required.

3.1 Measurement Selection Mechanisms

PSM facilitates measurement selection by providing a mapping of project-specific
issues to common software issues to defined measurement categories to individual
measures. Figure 2.3-2 illustrates this relationship. The common software issues,

Part 2 – Tailoring Software Measures

Page 84

measurement categories, and measurement descriptions are PSM defined mechanisms
that help narrow the measurement selection activity. Each common software issue has
one or more associated measurement categories. Each measurement category contains
one or more measures. Selection of a common issue narrows the range of categories
that must be considered. Selecting a category narrows the range of measures that must
be considered.

Software
Measures

Common Software
Issues

Software Measurement
Categories

Project-Specific
Issues

Figure 2.3-2. PSM Measurement Selection Mechanisms

The PSM mechanism provide a starting point for measurement selection and
specification. They are intended to be modified and adapted to meet each project’s
individual needs. They include:

• Common software issues - PSM defines six common software issues. Project-
specific issues are mapped to the common issues at the start of the measurement
selection activity.

• Software measurement categories - Most issues can be approached from several
different viewpoints. Measurement categories define groups of related measures.
The measures within a category provide similar information or a related view of
an issue. The measures within a category are derived in the same manner and
address related software characteristics. They help answer similar questions.

• Software measures - Usually several candidate measures are available for each
issue. A measure is a quantification of a characteristic of a software process or
product. The Guide provides criteria for selecting the measures that best provide
the information necessary to gain insight into an issue. Specifying a measure
involves not only selecting the measure, but also making decisions such as which
data items to collect, the level of data collection, and applicable exit criteria.

Part 2 – Tailoring Software Measures

Page 85

Part 3 of the Guide provides the complete mapping of the PSM common software
issues to measurement categories and measures. It also includes detailed tables
describing all of the measurement categories and measures listed. The software
measures in Part 3 are widely used for software project and technical management
purposes and have proven effective over a wide range of projects. These measures
represent the best practices for addressing many issues faced by managers of software-
intensive systems. However, they are not meant to present an exhaustive or
required set of categories and measures. No project should implement all of the
measures listed in PSM. Users should augment the lists with their own issues and
measures, based on their own experience and requirements. The PSM tailoring
process applies to any measure, whether or not it is included in the Part 3 tables.

3.2 Select the Measurement Categories

The first task in the select and specify project measures activity is to select the
measurement category that best addresses the identified issue. If several issues are
similar, then the same measurement category may suffice for all issues in that group.

As an example, consider the common software issue of Schedule and Progress. Three
different measurement categories, Milestone Performance, Work Unit Progress, and
Incremental Capability, are mapped to this issue. The measures in all of these
categories address schedule and progress related concerns, but they do so with
different types of information at different levels of detail.

Milestone performance measures provide basic start and end dates for defined
software activities and events. This is adequate for developing and reviewing Gantt
schedules, but the measures do not address the degree of completion of the individual
software activities and products at any point in time. More detailed schedule and
progress information is provided by the measures in the Work Unit Progress
measurement category. Lastly, the measures in the Incremental Capability category
show whether or not planned software components or functions are being completed as
planned for each build or release in an incremental software development approach.

One way to determine whether or not a category matches an issue is to consider the
types of questions the measures in that category answer. Figure 2.3-3 provides
questions corresponding to the PSM measurement categories. This table may be used
to find the measurement category or categories that most closely align with the project
specific issue.

Part 2 – Tailoring Software Measures

Page 86

Issue Measurement
Category

Question Addressed

Schedule and
Progress

Milestone Performance Is the project meeting scheduled
milestones? Are delivery dates slipping?

Work Unit Progress How are specific activities and products
progressing?

Incremental Capability Is capability being delivered as scheduled
in incremental builds and releases?

Resources and
Cost

Personnel Is effort being expended according to
plan? Is there enough staff?

Financial Performance Is project spending meeting budget and
schedule objectives?

Environment Availability Are necessary facilities and equipment
available as planned?

Growth and
Stability

Product Size and
Stability

Are the product size and content
changing?

Functional Size and
Stability

Are the requirements and associated
functionality changing?

Product Quality Defects Is the software good enough for delivery
to the user? Are open problems being
closed?

Complexity Is the software testable and maintainable?

Rework How much additional effort is being
expended due to changes and errors?

Development
Performance

Process Maturity Will the developer be able to meet project
constraints? Is the developer likely to
succeed given past performance?

Productivity Is the developer efficient enough to meet
current commitments?

Technical
Adequacy

Target Computer
Resource Utilization

Is the target computer system adequate?
Is there room for expansion?

Technical Performance Are project requirements such as
response time and accuracy being met?

Technology Impacts Is the planned impact of the leveraged
technology, such as common
architectures and COTS, being realized?

Figure 2.3-3. Measurement Categories and Related Questions

For example, if the project-specific issue is “progress of COTS software integration,”
then the work unit progress category is appropriate because the issue involves a

Part 2 – Tailoring Software Measures

Page 87

question about the progress of a specific activity, namely integration. If the project-
specific issue is “budget overruns to fix unanticipated problems,” then the rework
category is pertinent because the issue concerns the extra amount of effort applied to
correct latent defects.

The measurement category tables in Part 3 describe each PSM measurement category
in detail. The tables define each category in terms of what information is provided by
the included measures, and the applicability of the measures within the category to
different types of projects and software processes. The tables also identify the
limitations of the types of measures in each category. The tables help to determine
which of the measurement categories best satisfies the projected information
requirements for the issues and questions that have been defined.

The measurement category tables in Part 3 are grouped with similar tables that
describe each individual measure within that category. It is recommended that both
the category and associated measurement tables be reviewed together. Always choose
the measurement category that provides the best fit for the prioritized list of issues.
For critical or high-priority issues, consider selecting more than one measurement
category. This will lead to different types of measures and measurement information,
allowing for more in-depth analysis.

3.3 Select the Applicable Measures

The second task in the activity of selecting and specifying project measures is to
choose the measures that best address the specific project issues. The overall objective
is to define measures that not only adequately address the identified issues, but also are
practical to implement given the management and technical characteristics of the
project.

Many different measures may apply to an issue. In most cases it is not practical to
collect all or even most of the possible measures for an issue. Generally, more
measures should be collected to track high-priority issues. Identifying the “best” set of
measures for a project depends on a systematic evaluation of the potential measures
with respect to the issues and relevant project characteristics.

For example, if growth and stability is selected as an issue, then requirements and
software size measures will be needed to track it. The appropriate measure will
depend on the nature of the project. Language type and application domain influence
the choice of a size measure. Information Systems may use function points to measure
size. Weapons Systems are more likely to use lines of code.

Part 2 – Tailoring Software Measures

Page 88

Once a measurement category has been selected, the measurement selection criteria
defined below can be applied to identify the best measures for the project. Measures
are selected based on:

• Measurement effectiveness - How effective is the measure in providing the
desired insight? Is it a direct measure of the software characteristic in question?
Does the measure provide insight that relates to more than one issue?

• Domain characteristics - Are certain measures more likely to be used in a given
domain? For example, response time is widely used to measure target computer
resource utilization in information systems, while memory utilization is more
widely used in weapons systems.

• Project management practices - Can existing management practices be leveraged
to support the measurement requirements? For example, is a scheduling system in
use that provides one or more of the desired measures?

• Cost and availability - What data should be readily available in the project
context? How much effort will be required to extract and package the data for
analysis? Extracting data from electronic sources usually costs less than manual
collection.

• Life-cycle coverage - Does the measure apply to the life-cycle phase under
consideration? Does it apply to multiple life-cycle phases?

• External requirements - Has the overall organization or enterprise imposed any
related measurement requirements?

• Size/origin of software - Does the size or scope of the software project justify a
larger investment in measurement? Does this measure make sense for this type of
software, such as COTS?

The measurement description tables in Part 3 explain each of the PSM measures in
detail with respect to these criteria.

In most cases, the selection activity will require that tradeoffs be made among the
measurement selection criteria. For example, a given measure may directly address a
high-priority project issue, but may be too costly to implement in terms of time and
resources. Some measures, when used in conjunction with other specific measures,
support multiple analysis needs. For example, lines of code are used to calculate and
analyze software development performance in terms of productivity, and quality in
terms of deficit density. This measure may therefore be important even if Growth and
Stability is not a priority issue.

Part 2 – Tailoring Software Measures

Page 89

In general, measures from different measurement categories within the same common
issue can be substituted with some degree of effectiveness. Also, measures that are
categorized under different common issues may provide additional insight into the
issue in question. Obviously, it is better to use a substitute measure than to select a
measure that cannot be implemented.

After the initial measures are selected, they should be reviewed to ensure that the high-
priority issues are addressed, and that there is adequate coverage across all of the
identified issues. For some unique issues, none of the measures included in the PSM
tables may provide adequate information. In these cases, more advanced or different
measures than those provided should be defined and specified. The bibliography
contained in Part 7 provides potential sources for other measures.

3.4 Specify the Data Requirements

Once the measures have been selected, the last task of the measurement selection and
specification activity can be performed. This is to specify the data requirements for
each identified measure. The data requirements defined in this task become the basis
for agreement with the developer to define what and how data will be provided.
Within an IPT environment, specification should be done in conjunction with the
developer. The data requirements may be inserted into a Request for Proposal (RFP).
If the developer’s measurement plan is submitted in response to an RFP, the plans for
data management may be evaluated as part of the source selection process. (See the
PSM Addendum, DoD Implementation Guide, for more information on this topic.)
For an in-house or commercial development, the data requirements still need to be
specified and defined, but this may be done more informally in some cases.

The appropriate level of detail for the collection of measurement data must be defined.
The frequency and format of data deliveries must also be specified, since data may be
reported less often than the data is collected by the developer. The tables in Part 3
provide typical data requirements for commonly used software measures. A more
detailed description of the data requirements for software measures is provided below
in the section on “General Implementation Requirements.”

3.4.1 Attributes

The data requirements for a given measure include data items and related measurement
attributes. An attribute is a characteristic or property assigned to a measurement data
item. For example, integration test data may be defined with the attribute of “name of
the test sequence,” to help identify when the data was generated. Other examples of
data attributes include:

Part 2 – Tailoring Software Measures

Page 90

• name of the organization

• build or release version of the software

• priority level of a software problem

• identifier for the plan or actual data source

Attributes are used to sort and correlate data items. For example, priority codes are
frequently used to classify problem reports, rather than just looking at the total number
of problem reports. Provision must be made for defining the necessary attributes when
the measures are specified. The desired attributes may also affect the ability of the
software developer to easily provide the required data.

3.4.2 Aggregation Structure

Software measurement data is usually generated at a relatively low level of detail
within the project. It is much more practical, for example, to measure the size of an
individual software component, such as a software unit, than to measure the entire
software system. Similarly, it is easier to measure the effort applied to the
development of a single software component than that applied to the full system.
Although it is usually recommended that the data be collected at the level it is
measured, effective measurement analysis and reporting requires that the data be
aggregated to higher-level component and organizational structures for analysis and
reporting purposes. There are different ways of aggregating the measurement data.
These are called aggregation structures.

There are three general types of measurement aggregation structures. Simplified
examples of each type are depicted in Figure 2.3-4. These include:

• Component based aggregation structures - These structures are derived from
the relationship of the software components as represented in a particular software
design. Component structures vary based on the overall software design process.
For projects that implement an incremental development approach, or for
sustaining engineering efforts that deliver periodic version releases, lower level
components such as units and configuration items are usually mapped to the
incremental delivery products as part of the aggregation structure.

• Functionality based aggregation structures - These structures define the
functional decomposition of the software requirements. They are often mapped to
the software design components. If they are, measures of the requirements, such
as the number of requirements tested, can be aggregated and evaluated for a
particular function.

Part 2 – Tailoring Software Measures

Page 91

• Activity based aggregation structures - These structures are derived from the
hierarchy of development and maintenance activities that combine to define the
complete activity structure for a project. Software activities generally include
requirements analysis, design, implementation, and integration and test, as well as
other activities that need to be performed to complete the project.

CI A

CI B

CI C

CI D

CI E

CI F

CI G

CI H

CI I

CI J

Software
Functionality

Systems
Services

Display
Services

Data
Management

Transaction
Processing

Unit A1

Unit A2

Unit A3

Unit C1

Unit C2

Unit C3

Unit B1

Unit B2

Unit B3

Unit D1

Unit D2

Unit D3

Software
Structure

Build 1 Build 2

CI A CI B CI C CI D

CI A

CI B

CI C

CI A

CI B

CI C

CI A

CI B

CI C

CI A

CI B

CI C

Software
Activity

Requirements
Analysis

Design Implementation
Integration
and Test

Figure 2.3-4. Sample Measurement Aggregation Structures

The different types of aggregation structures are uniquely defined for each project. In
general, the measurement aggregation structures are related to either the management
structure of the project or to the physical design of the software. The project Work
Breakdown Structure (WBS) and the software design information are key reference

Part 2 – Tailoring Software Measures

Page 92

tools for defining applicable measurement aggregation structures, since they
respectively describe the software project management and technical relationships.

The aggregation structure is a basic tool to help specify, collect, process, and analyze
data. Data elements that describe how the measures relate to existing project
structures need to be defined in order to combine, and later to decompose, the
measurement results into meaningful pieces of information. For example, it may be
necessary to track the amount of software development effort applied to requirements
analysis, design, implementation, and integration and test activities on a separate basis.
If the effort data collected for each software development activity includes an attribute
that links it to a particular activity, the aggregations can be easily made. Data such as
this would be useful to show where improvements could be made within a project or to
project final costs based on the remaining work to be done.

There are some limitations with respect to using aggregation structures. A good
example is the calculation of software productivity. To do this, both software size and
effort data is required. Given that both data types are derived in relation to a defined
software component, care must be taken to ensure that the code being measured is
actually correlated to the effort being measured. Productivity, of course, is the ratio of
size to effort. As simple as this appears, the aggregation of the productivity
calculation is limited. In general, software components are unique enough in size and
other characteristics to preclude valid productivity comparisons at the component
level. On the other end of the aggregation structure, productivity cannot usually be
calculated for the entire project if there is more than one software development
organization or subcontractor. Productivity is generally only valid when bounded
within a single organization.

3.4.3 Level of Detail

In order to support the measurement analysis process, data must be collected at a level
of detail that will allow problems to be isolated. Some of the factors to consider in
determining the appropriate level of data collection are:

• Requirements and size data are normally tracked at the CI level or below.
Consider tracking size at a lower level if the CIs are large.

• Progress is normally reported at the level of major activity such as design.
Consider tracking at the level of sub-activities if the schedule is a long one.

• Keep data from subcontractors separate if the subcontractors have significant
software development responsibility, or use a different development process.

• Maintain separate counts of size for each language type, including 4GLs and
application generators, unless the languages are comparable.

Part 2 – Tailoring Software Measures

Page 93

• Maintain separate counts of size, effort, and problem reports for each category of
software such as new development, reuse, and COTS, especially if project success
depends on realizing some specific benefit from these approaches.

• Keep separate counts for each priority category of problem report, especially if the
project maintains a large backlog of problems.

Different types of data may be collected at different levels of detail using different
aggregation structures. If data is to be compared, it must roll up within the same
aggregation structure. As previously mentioned, it is hard to analyze productivity
when effort data is collected by categories that do not map to the component structure
used to measure size. When selecting and specifying project measures, the ability of
the developer’s cost accounting system to support detailed effort and cost reporting is
also an important consideration.

In determining the appropriate level of detail, the cost of data collection, data
processing, and analysis must all be balanced against the need for detailed insight into
project issues. More detailed data allows greater flexibility in analysis in terms of
defining new indicators and determining the source of potential problems. However, a
greater level of detail also implies a greater volume of data and a greater cost to the
measurement process. More detailed data should be sought to track those issues that
are considered to be most important. All of these recommendations for selecting
measures and their level of detail must be tempered with an understanding of the
developer’s process.

3.5 Selecting and Specifying Measures for Existing Projects

The PSM measurement selection and specification guidance is generally structured to
support a sequential tailoring of the measurement process. In some instances, the need
to implement a measurement process is driven by a significant project event or issue
that must be immediately supported by objective software information. In other cases,
new policy guidance or other external requirements such as a major milestone review
may make it necessary to implement measurement on a project that is underway.

The tailoring approach still begins with the identification and prioritization of specific
project issues. In all likelihood, key issues have already been identified, and the
immediate objective is to identify what data can be used to provide meaningful
information to the project manager. However, less emphasis should be placed on
defining data requirements and more emphasis placed on identifying existing
measurement opportunities.

Successfully implementing measurement on an existing project means taking
advantage of the measurement opportunities already present in the project’s software

Part 2 – Tailoring Software Measures

Page 94

management and technical processes. Often the necessary data already exists, but has
not been mapped to the issues or collected in any systematic way. Section 4.2
discusses in more detail the potential sources of data to be found in an existing project.

Part 2 – Tailoring Software Measures

Page 95

CHAPTER 4 - INTEGRATE MEASURES INTO THE SOFTWARE

PROCESS

Up to this point, the measurement selection process has largely been driven by “what”
the project manager needs to know about the issues. The next task is to look at “how”
the measurement process will actually function within the project management and
technical processes. The data readily available from the developer may not map
exactly into the ideal measurement requirements defined to date.

This final tailoring activity includes three tasks, as depicted in Figure 2.4-1. First, the
software process and environment are characterized. Next, opportunities for
measurement within that environment are identified. Finally, the measurement
requirements are specified, typically in a software measurement plan.

Data
Requirements

Measurement
Plan

Proposed
Changes

Software Process
Characteristics

Characterize
Software

Environment

Identify
Measurement
Opportunities

Specify
Measurement

Implementation
Requirements

Figure 2.4-1. Integrate Measurement Into The Developer’s Process

During the course of performing these tasks, the developer should propose changes to
the project measurement requirements to better integrate the measures into the
software process. The measures and data requirements selected in the previous
tailoring activity form the basis for agreements between the acquirer and the developer
about the specific data elements to be provided for analysis. This agreement may be
accomplished via a formal contracting process, or via a less formal understanding in
the case of internal developments. The result of this activity is a definitive statement
of the measurement approach to be followed, often documented in a measurement
plan, or incorporated into the project management or software development plans.

Part 2 – Tailoring Software Measures

Page 96

The PSM Addendum, DoD Implementation Guide, provides sample contract wording
that helps to implement the formal agreement. A “contract” may be a formal contract,
a Memorandum of Agreement (MOA), an Inter-Service Support Agreement (ISSA), or
some other written agreement. The technical concepts discussed in this Guide are
applicable to whichever type of contract or agreement is used.

The tasks required to integrate the measurement requirements into the software process
are discussed below.

4.1 Characterize the Software Environment

The developer’s software process defines how the software is actually measured.
The definition of a measurement process cannot be based solely on the objectives of
the acquisition organization. To collect measurement data in the most cost effective
and useful manner, the software process of the developer must be considered. Project
issues identify the information that the measurement process must derive from the
data. The developer’s software process determines what specific data items may be
collected and how that can be accomplished.

One purpose of the measurement process is to provide insight into the performance of
the developer. The measures collected must objectively represent the activities and
products of the developer’s software process. As much as possible, the acquisition
organization should select measures that are normally collected by the software
developer. This decision should also consider the software processes employed by any
software subcontractors.

Some key factors to consider are as follows:

• The life-cycle model or activity structure used to define the developer’s process

• The software product structure, including builds and releases defined by the
developer

• The product line architecture

• Current measurement activities employed by the developer

• Software technology, including programming language, design language, and tools

• Planned source of the software; such as COTS, newly developed code, and reuse

• Management, review, testing, and inspection practices employed by the developer

• Engineering and management standards to be applied

Part 2 – Tailoring Software Measures

Page 97

The developer’s software process has a major impact on the cost and effectiveness of
the software measurement process. Whenever possible, the developer’s current
practices and existing data collection mechanisms should be used. New measurement
requirements should be minimized. Use the project’s WBS, including product
structure and activities, as the basis for measurement.

To the extent that the activities of the developer’s software process are well-defined,
measuring them will provide useful information. An ad-hoc or ill-defined process
makes it difficult to tell exactly what is being measured.

For many issues, the data that is available changes across life-cycle activities. For
example, during implementation, progress may be measured in terms of units designed
and coded. During integration and test, progress may be measured in terms of tests
attempted and passed. The measurement analyst must ensure that relevant measures
and indicators are provided throughout the project’s life cycle, making modifications
as appropriate.

Before measurement requirements are finally agreed to, the acquisition organization
should understand the developer’s process and obtain direct feedback from the
developer on the project measures. The measurement process should not be used to
force process changes on the developer. Giving appropriate consideration to the
developer’s process helps to ensure that useful data is provided with the lowest impact
and cost.

4.2 Identify Measurement Opportunities

During measurement planning, a high priority should be given to identifying any
measurement mechanisms already in place within the development organization. This
is especially important when implementing measurement on an existing project.
Give special attention to databases and tools supporting project management, quality
assurance, and configuration management. Extracting and delivering data from
electronic sources is usually more cost effective than manual or paper forms-based
collection methods.

Software data comes from many sources. Three primary forms of data include
historical data from past projects, planning data, and actual performance data. Most
actual performance data originates with the developer. However, initial planning data
often is produced by the acquirer.

� Historical data - This data could include information collected by the software
acquirer from past projects, as well as data collected by the developer about
previous projects. This data helps make estimates and determine the feasibility of
plans.

Part 2 – Tailoring Software Measures

Page 98

� Plan data - The planning data typically contains the budgets and schedules
against which progress and expenditures will be compared. Data must be
collected from both initial plans and later replans including incremental changes to
plans. As the project evolves, the corresponding actual data on problems,
progress, size, and effort will become available.

� Actual performance data - Many sources of data exist within the developer’s
process. Software problem counts by severity can be obtained from configuration
management databases, if they are properly structured. Counts of hours expended
by activity can be obtained from financial management records. Progress data
usually comes from the detailed work plans maintained by technical managers and
team leaders. Consistent use of project management tools facilitates data
collection.

Counts of software units, lines of code, and changes to software and documents
usually can be obtained from configuration management records and reports.
Alternatively, a source code analyzer may be used. Product information, such as
counts of lines of code or pages, can also be captured during reviews and inspections.
Note that in all these cases, the most efficient method of collecting the desired data
depends on the nature of the software developer’s process. Figure 2.4-2 shows some
typical sources of data.

For important issues, look for sources of data that are available early. For example, if
quality is a major concern, try to identify sources of inspection data during design,
rather than waiting for problem report data from testing.

Part 2 – Tailoring Software Measures

Page 99

Measurement
Category

Electronic Source Paper Source

Milestone

Performance

Project Management System

Personnel Cost Accounting System

Time Reporting System

Estimation Tools

Time Sheets

Product Size and
Stability

Static Analysis Systems

Configuration Management System

Product Listing

Functional Size and
Stability

Function Point Counting Systems

Configuration Management System

Requirements
Specifications

Defects Defect Tracking System

Test Automation System

Configuration Management System

Case Tools/IDE Tools

Test Automation Tools

Test Incident Reports

Review/Inspection
Reports

Complexity Static Analysis Systems Review/Inspection

Reports

Figure 2.4-2. Typical Sources of Data

4.3 Specify Measurement Implementation Requirements

The last task in the activity of integrating measurement into the developer’s process is
to define the data and implementation requirements for each of the selected measures.
As much as possible, take advantage of the existing measurement opportunities
defined in the preceding task.

The PSM guidance that supports specifying implementation requirements is also
included in the measurement tables in Part 3. These tables include a list of the data
items that are typically collected for each measure, the typical levels of detail at which
the data is collected, the software activities to which the measure applies, and other
pertinent information. The purpose of this information is to help identify the detailed
requirements necessary to implement the project software measurement process.

Part 2 – Tailoring Software Measures

Page 100

4.3.1 General Implementation Requirements

The measurement specification information provided in the PSM Measurement
Description tables is focused on the single measure being described. A set of general
implementation requirements, applicable to all measures, is listed in a separate table in
Part 3, titled General Measurement Specification. After reviewing the measurement
specification guidance on each of the tables for the selected measures, review the
specification guidance in the General Measurement Specification table.

The general specification guidance outlines the requirements related to defining and
collecting measurement data. These requirements help define the overall measurement
implementation approach on the project and help convey to the developer how the
measurement plan should be implemented. The general requirements include the
following:

� Data types - Measurement data that represents plans, changes to plans, and
actuals for each measure should be collected and reported. Plans and estimates
should be updated regularly by the developer. Effective insight can be derived
early in the project by analyzing how the planning data is changing. Extremely
stable plans may indicate that the developer is not adjusting to actual project
events. For many projects, some plans and estimates are difficult to collect due to
limitations in the software process. For example, not everyone can adequately
project the number of expected problem reports to be found. In these cases, trends
based on the periodic actual data may be adequate to support the measurement
analysis requirements.

� Measurement definitions - During this task, the developer identifies the actual
measurement definitions that will be used for each specified measure. These
definitions sometimes vary over the course of the project, as software processes
are modified and updated. Changes to the definition and interpretation of any
measure should be defined by the developer and relayed to the acquirer. In many
cases, this information is included in the periodic delivery of the measurement
data. For many measures, such as lines of code, the estimation methodologies and
the way the actuals are counted may be different. This can sometimes result in
variances between plans and actuals that are related to definitions and not
performance. Such estimation inconsistencies should be identified. Many
measures require that both the estimation and actual counting methodologies be
defined, as well as the “exit” criteria for measuring actuals. Definition of the
measures is extremely important, as it provides the basis for correct interpretation
of the associated data.

� Data dates - For each measure, both the date that the measurement data was
collected and the date that it is reported should be identified. This allows the

Part 2 – Tailoring Software Measures

Page 101

timeliness of the data to be assessed, and supports the correlation of related
measurement data during analysis. On a productivity calculation, for example, the
time period during which the number of lines of code is produced should
correspond to the time period of the labor hours used to produce them. The
difference between the date the data was collected and the date the data was
provided to the project office should be minimized. This allows for timely analysis
and feedback on the issues.

� Collection periodicity - Measurement data should be collected periodically, not
by event. This is generally monthly on most projects, but can be adjusted as
necessary. Data may be collected more frequently as a milestone decision
approaches. Problem report data, for example, is often collected and reported on a
weekly basis during integration and test. The frequency of collecting and
reporting measurement data should be consistent with the level of risk that has
been associated with each issue.

� Measurement scope - If more than one organization is involved in developing the
software for a project, measurement data should be collected from each
organization and identified by source. This is usually the case when there are one
or more software subcontractors working under a prime contractor. In many
instances, the individual organizations have different software processes, which
result in different measurement definitions for the same measure. This prevents
the combination and aggregation of some types of measurement data from the
different organizations. In these cases, the data from a given organization must be
managed and analyzed separately. For example, a system level productivity
calculation may be invalid if different subcontractors count labor hours and
software size differently. In some cases, different measures will be used by
different organizations to address similar issues.

� Project phase - The measures that are selected and integrated into the project
should generally be applied to all life-cycle phases, including project planning,
development, and sustaining engineering. For most measures, the planning data
will be available initially, followed by actual data as the project progresses and
planned software process activities are implemented. Even when actual data is
available, the related measurement plans and estimates should be periodically
updated.

� Data reporting mechanisms - The reporting mechanisms for delivering data from
the developer vary, based upon the actual measures selected and the internal
software and project management processes of both the developer and the project
office. The data for many measures, such as problem reports, are usually
available from an existing configuration management database that can be
accessed on a real-time basis. In other cases, such as with effort, size, and
schedule measures, the data can easily be formatted into electronic media and

Part 2 – Tailoring Software Measures

Page 102

delivered. Some data may need to be delivered in hard copy format. During
tailoring, the developer identifies the mechanisms that are available. The preferred
method is to electronically transfer the data on a periodic basis.

4.3.2 Project Measurement Plan

The results of the final activity of the tailoring process are typically documented in a
software measurement plan. The plan should list the issues and the measures required
to address them. The plan should describe the process to be used to collect and
analyze the data. It should explain how the developer and acquisition managers will
use the measurement results for decision making and communication within the
project.

The software measurement plan may be formal or informal. The plan should be
modified as required to accommodate different information needs and developers’
processes. The plan may be produced as a separate document, but is commonly
included in the Software Development Plan (SDP), the Software Maintenance Plan
(SMP), or similar planning document. Regardless of the formality of the measurement
plan, it should incorporate the following information:

• Issues and measures – List the identified issues and selected measures. Show
their relationships.

• Data elements - Define the structures, attributes, and data items required for all
measures.

• Data definitions - Provide a complete and unambiguous definition of each data
item. The checklists contained in the SEI Core measures (see Bibliography) may
be helpful. Methodologies for calculating any derived measures such as
productivity or defect density should also be provided.

• Data sources - Identify the specific sources, including person, tool, report,
activity, for all data items.

• Level of measurement - Determine the level of detail at which data items are to
be collected and delivered for analysis.

• Aggregation structure - Define the structures by which data items will be
combined to provide system and other aggregations.

• Frequency of collection - Specify how frequently data is to be collected and
delivered for analysis. This is typically monthly.

Part 2 – Tailoring Software Measures

Page 103

• Method of delivery - Define the method for providing access to the data, such as
access to a database or electronic media.

• Communication and interfaces - Identify the points of contact for all data
sources, reports, and requests for clarification.

• Frequency of analysis and reporting - Determine the periodicity when
measurement results will be provided to the project. This is typically monthly.

Figure 2.4-3 shows a more detailed sample outline for a measurement plan.

The project software measurement plan should be coordinated with both the risk
management plan and the financial performance management plan. All significant
quantifiable risks should be reflected in the measurement plan. The financial
performance plan should be based on objective information produced by the
measurement process rather than subjective assessments of percent complete or
remaining effort. For small projects, all of this information can be included in one
management plan.

Part 2 – Tailoring Software Measures

Page 104

Software Measurement Plan Outline

Part 1 – Introduction
- Purpose
- Scope

Part 2 - Project Description
- Software Technical Characteristics
- Project Management Characteristics

Part 3 - Measurement Approach
- How Measurement is Integrated into the Software Technical and

Management Processes
- How Data Will Be Collected and Used
- Measurement Points of Contact (Developer, Subcontractors)
- Measurement Responsibilities
- Organizational Communications and Interfaces

Part 4 - Description of Project Software Issues
- Prioritized List of Software Issues and Objectives

Part 5 - Software Measures and Specifications
- Include for Each Selected Measure (for each developer if different)

a. Measure name
b. Issue the measure maps to
c. Data items
d. Attributes
e. Aggregation structures
f. Collection level
g. Criteria for counting actuals
h. Data definitions
i. Estimation methodology
j. Collection and reporting mechanisms
k. Source of data
l. Collection and reporting periodicity

Part 6 – Project Aggregation Structures
- Component Aggregation Structure, such as CIs, units
- Software Activity Aggregation Structure, such as Requirements Analysis,

Design, Implementation, and Integration and Test
- Functional Aggregation Structure

Figure 2.4-3. Sample Outline for Software Measurement Plan

4.3.3 Organizational Measurement Plan

Most large projects will require the development of a unique software measurement
plan. However, some organizations may be able to define a software measurement

Part 2 – Tailoring Software Measures

Page 105

plan that covers many projects. This implies that a common measurement set can be
defined for the organization. A common measurement set only makes sense for
projects that share the following characteristics:

• similar software issues

• common software processes (standards, practices)

• stable technology (languages, tools, platforms)

• similar application domains

Imposing a standard measurement set in situations where these conditions are not
satisfied may burden individual projects with unnecessary measurement requirements
while missing important project issues that should be tracked.

A common data set or normalization scheme may be necessary for other types of
analysis to support process improvement and business purposes. Although, this Guide
focuses on project level analysis, it provides a basis for organizational and executive
level measurement. Recording the characteristics that drive decisions in the
measurement selection activity may be important later to determine how to normalize
data for these purposes.

In addition to the project-specific measurement needs discussed in this Guide, other
users may have other valid needs that the project's measurement process must address.
These other users include executive managers performing an oversight function and
software engineering process groups working on process improvement. Most of the
data needed by these other users originates at the project level. Getting good data for
executive review and process improvement depends on establishing an effective
project-level measurement process.

Most organizations require formal reporting of actual cost and schedule progress
against budget baselines. Large DoD programs are required to use the Earned Value
methodology for this purpose. Any such financial performance management system
should be based on results from the measurement process.

Consider measurement requirements from all sources together when developing a
project's measurement plan. This will enable the measurement analyst to minimize the
redundancy and inefficiency that can result from multiple data collection efforts.
Focusing on measures and analyses that benefit multiple users helps to maximize the
value of the measurement process implemented.

Part 2 – Tailoring Software Measures

Page 106

Part 2 – Tailoring Software Measures

Page 107

CHAPTER 5 - MEASUREMENT TAILORING EXAMPLE

Chapters 1 through 4 describe the PSM tailoring process as it can be applied to any
project. This chapter provides a fictional project scenario as an example of how to use
the PSM process to select a set of software measures.

5.1 Project Scenario

During the project-planning phase of a large real-time weapons system software
upgrade, the project office learned that the updated system would have to be deployed
earlier than originally planned. The planning efforts completed to date had already
identified some significant constraints with respect to schedule, and this change
increased the schedule risk even further. The project manager decided to implement a
measurement process to help guide the project through these difficult challenges.

First, the key characteristics of the project were identified and documented. This
information is summarized as follows:

• Large real-time weapons system

• Existing system baseline

• Approximately 1.5 Million lines of source code to be implemented

• Multiple software languages - Ada, C, and Assembly

• Multiple developers working under a prime contractor responsible for system
integration

• Average software process maturity across all organizations

• Constrained funding limits

Due to the schedule risk and the large amount of functionality that had to be
implemented in a short time, the project office required that the developer use
Commercial Off the Shelf (COTS) software components. The developer was
instructed to reuse a considerable amount of legacy software, adopt an open-systems
architecture, and apply commercial software process standards.

Part 2 – Tailoring Software Measures

Page 108

5.2 Identify and Prioritize Project Issues

Following the PSM measurement selection and specification approach, a planning
workshop was held to identify and prioritize the project specific software issues and
then select appropriate measures for those issues. This workshop was a facilitated
session with representatives from the project management team, the developer, and the
subcontractors. After the workshop, a subset of participants was designated to form
an Integrated Product Team to develop and implement a measurement plan based on
the workshop results.

During the workshop, the participants developed a list of issues affecting the project.
The issues included the risks identified through the formal risk management process,
the project objectives and constraints that were specified in the contract, and issues
identified based on experience from previous projects. This activity produced a list of
areas of concern for the project. These areas were consolidated into a set of prioritized
project specific issues with related sub-issues as outlined in Figure 2.5-1.

Issue / Sub-Issue Priority
Are schedule milestones met? 1

� Is integration and test progress adequate to meet the
delivery date?

� Do incremental builds contain the specified
functionality?

Is the productivity rate sufficient to meet plans? 2

� Were the size estimates that were used for cost and
schedule plans correct?

� Will the planned COTS/reuse meet allocated
requirements or will additional new code be required?

Are there sufficient resources to complete the development? 3
Are requirement changes impacting the development? 4
Does the project meet quality requirements, as measured by
numbers of problem reports?

5

Figure 2.5-1. Issues and Priorities

The primary risk to the project was the short development schedule. The project had
originally been “sold” on the new mission capabilities and the use of advanced
technologies. Using advanced technologies increased the overall technical risk of the
software development. The need to deliver the system earlier than expected increased
the concern.

Part 2 – Tailoring Software Measures

Page 109

5.3 Select and Specify Project Measures

The issues were mapped to the PSM common software issues as shown in Figure
2.5-2. The PSM measurement tables were reviewed to help determine the best
measurement categories and associated measures to provide the required information.
This selection also considered the availability of measures from the developer’s
process. Figure 2.5-2 lists the measures that resulted from the selection activity.

Project
Specific

Issue

PSM
Common

Issue

Categories Measures

Schedule Schedule and
Progress

Milestone
Performance

Milestone Dates

Work Unit Progress Component Status
(Integration and Test)
Requirement Status

Incremental
Capability

Build Content-Function

Productivity Development
Performance

Productivity Product Size/Effort
Ratio

Growth and
Stability

Product Size and
Stability

Lines of Code

Technical
Adequacy

Technology Impacts Size by Origin

Resources Resources and
Cost

Personnel Effort

Requirements Growth and
Stability

Functional Size and
Stability

Requirements

Quality Product Quality Defects Problem Reports

Figure 2.5-2. Measure Mapping

For purposes of this example, only the selection of the schedule and progress measures
is discussed below. The categories of Milestone Performance, Work Unit Progress,
and Incremental Capability were selected to address schedule. The Milestone
Performance category was selected because this provided a high-level overview of
schedule progress, and because Gantt charts were already being used to manage the
project.

Work Unit Progress measures were selected to track the development activities due to
the amount of COTS and reused code that would be implemented. The focus was on
the selection of requirements-oriented measures and measures that provided progress
information for integration and test, rather than for design and implementation.

Part 2 – Tailoring Software Measures

Page 110

The build content measure was selected because the team felt that it was important to
ensure that each of the incremental builds incorporated all of the planned functionality.
The team needed to be aware of any functionality deferment early, in order that
schedule impacts could be minimized and productivity could be evaluated.

The previous paragraphs describe how the measures for Schedule and Progress were
selected. A similar method was used to select the measures in each of the other
categories.

5.4 Integrate Into the Software Process

At the completion of the measurement selection activity the IPT had defined a
prospective list of measures along with perspective data items, attributes, and
aggregation structures. The next activity was for the developer to define the detailed
measurement specification for each selected measure. The results were documented in
the project software measurement plan. The detailed specification for the lines of code
measure is provided in Figure 2.5-3 for illustrative purposes.

All of the decisions made in this tailoring workshop were documented in the Software
Measurement Plan including:

• the list of project-specific issues, along with all the associated detail describing
each issue

• the PSM common software issue and category to which each project-specific
measure maps

• the measures selected to address the issues and the rationale for selecting each

• the measurement specification for each selected measure

• a list of interfaces

The measurement plan was implemented on this project. Data was collected and analyzed
monthly. Analysis results were used by the project manager.

Part 2 – Tailoring Software Measures

Page 111

Measure Lines of Code

Data Items Number of Lines of Code (LOC)
Number of LOC Added
Number of LOC Modified
Number of LOC Deleted

Attributes Data Type (plan, actual)
Data Collection Date
Data Reporting Date
Organization
Source (new, reused)
Language (Ada, C, Assembly)
Build

Structure Component by CI

Definition LOC will be counted as logical lines of code. No
blank lines or comments will be included.

Collection Level Unit

Count Actuals
Based On

A unit is counted as complete when it passes code
inspection. This means that code has been
completed and turned over to configuration
management, unit testing has been completed, the
code inspection has occurred, and all outstanding
action items from the inspection are complete.

Applied During Estimates are calculated during requirements analysis
and design. Actual data is available during
implementation. Updated actuals are re-measured
during integration and test if a unit is modified to
integrate a fix.

Data Reporting
Process

Unit level data is available from the configuration
management system used on the project. The
government may access this system at any time to do
detailed analysis. The government is provided a CI
level report of this data once a month via an ASCII
export on diskette.

Periodicity Monthly

Figure 2.5-3. Specification for Lines of Code

Part 2 – Tailoring Software Measures

Page 112

PSMPSMPSMPSM
MEASUREMENT SELECTION

AND SPECIFICATION TABLES

PART 3

Part 3 - Measurement Selection and Specification Tables

Page 114

Measurement Selection and Specification Tables

Page 115

MEASUREMENT SELECTION AND SPECIFICATION TABLES

Part 1 of Practical Software Measurement: A Foundation for Objective Project
Management provides an overview of the measurement tailoring process, and Part 2
describes the tailoring process in detail. This part of the Guide, Part 3, contains
detailed tables that help to select the appropriate measures, and to specify the
related data and implementation requirements.

The guidance in this part of the Guide represents only a starting point for selecting
and specifying measures for a specific project. It is recommended that the tables be
augmented and modified to meet individual project requirements.

This part of the Guide is organized into two chapters:

• Chapter 1, How to Use the Tables - explains how to use the detailed PSM
measurement selection and specification tables found in Chapter 2.

• Chapter 2, Detailed Measurement Selection and Specification Tables -
provides a series of tables to help choose the measurement categories and
individual measures that are correct for a project. The tables also provide
specification guidance for each measure to help define associated data and
implementation requirements.

Part 3 - Measurement Selection and Specification Tables

Page 116

Measurement Selection and Specification Tables

Page 117

TABLE OF CONTENTS

CHAPTER 1 - HOW TO USE THE TABLES ..119

1.1 Introduction ..119

1.2 How To Use the Measurement Tables..119

1.3 Measurement Category Tables ...121

1.4 Measurement Description Tables ...122

1.5 General Measurement Specification Table ..125

1.6 Additional Guidance ..125

CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND SPECIFICATION

TABLES ..127

Part 3 - Measurement Selection and Specification Tables

Page 118

Measurement Selection and Specification Tables

Page 119

CHAPTER 1 - HOW TO USE THE TABLES

This chapter provides information on using the measurement tables in Chapter 2 to
determine which measures should be selected for a project. The measurement tables
also define the data and implementation requirements for the measures that are
selected. The information is contained in both Measurement Category and
Measurement Description tables. The tables are grouped according to the six
Common Software Issues.

1.1 INTRODUCTION

The Measurement Category and Measurement Description Tables provide the
information required to select and specify the measures for a project. The PSM
selection and specification approach is based on the direct relationship between project
issues, information needs, and the specific measures that provide the required
information. To implement this approach, PSM defines a simple mapping from the
Common Software Issues to related Measurement Categories, and then to individual
measures in each category. This mapping is depicted in Figure 3.1-1. The structure
of the Measurement Tables in this chapter follows this mapping. The table structure
guides the user in selecting first the measurement categories and, subsequently, the
specific measures that address the identified project issues. After the measures are
selected, the tables further provide the information that helps to specify the data and
implementation requirements for each measure.

1.2 HOW TO USE THE MEASUREMENT TABLES

Two types of Measurement Tables are provided, Measurement Category Tables and
individual Measurement Description Tables. Both are grouped according to the six
Common Software Issues.

Part 3 - Measurement Selection and Specification Tables

Page 120

Software Issues - Categories - Measures Mapping
Issue Category Measure

Schedule and Milestone Performance Milestone Dates
Progress Work Unit Progress Component Status

Requirement Status
Test Case Status
Paths Tested
Problem Report Status
Reviews Completed
Change Request Status

Incremental Capability Build Content - Component
Build Content - Function

Resources and Cost Personnel Effort
Staff Experience
Staff Turnover

Financial Performance Earned Value
Cost

Environment Availability Resource Availability Dates
Resource Utilization

Growth and Stability Product Size and
Stability

Lines of Code
Components
Words of Memory
Database Size

Functional Size and
Stability

Requirements
Function Points
Change Request Workload

Product Quality Defects Problem Reports
Defect Density
Failure Interval

Complexity Cyclomatic Complexity
Rework Rework Size

Rework Effort
Development Process Maturity Capability Maturity Model Level
Performance Productivity Product Size/Effort Ratio

Functional Size/Effort Ratio
Technical Adequacy Target Computer

Resource Utilization
CPU Utilization
CPU Throughput
I/O Utilization
I/O Throughput
Memory Utilization
Storage Utilization
Response Time

Technical Performance Achieved Accuracy in
Requirements (Concurrent
Tasking, Data Handling, Signal
Processing, etc.)

Technology Impacts Quantitative impact of new
technology (NDI Utilization,
Size by Origin, Cycle Time,
etc.)

Figure 3.1-1. Mapping Common Software Issues to Measurement
Categories and Measures

Measurement Selection and Specification Tables

Page 121

The PSM measurement selection and specification guidance is designed to simplify the
mapping of the project issues to the applicable measures. As such, measures that
support multiple software issues are listed under a single primary issue. However,
many of the measures do provide insight into more than one common issue.

The measures listed in the Measurement Tables are not intended to represent an
exhaustive or required set of project management measures. However, they are
measures that have repeatedly proven to be effective over a wide range of projects.
The Measurement Table information represents the best practices for addressing the
issues faced by most project managers responsible for software-intensive systems.
Users should augment the list of measures based on their own experience and
requirements. PSM provides guidance for tailoring any measure, whether or not it is
included in the Measurement Tables. No project should implement all of the measures
listed in Chapter 2.

1.3 MEASUREMENT CATEGORY TABLES

The Measurement Category Tables help to determine if the measures in a specific
category provide the type of information required to adequately address a specific
project issue. These tables should be reviewed for each Common Software Issue that
has been identified as relevant to the project. If the category provides the type of
information that is required, the Measurement Description Tables within that category
should then be reviewed to select specific measures. In most cases, the Measurement
Category Tables and the Measurement Description tables are reviewed concurrently.

Figure 3.3-2 is a “roadmap” to the information contained in a Measurement Category
Table. The following statements describe the type of information provided in each
section of the table. The information in each section of the Measurement Category
Table applies to all measures within the category.

• Measurement Category and Issue - the Measurement Category and the
corresponding Common Software Issue.

• Definition and Description - a description of the types of measurement
information that is provided by the measures in the Measurement Category, and
how this measurement information is used.

• Project Application - information that helps to identify specific types of projects
to which the measures in the category apply. The information addresses
applicability with respect to functional domain, size, and life-cycle phase of the
project.

• Measures Included in this Category - the measures that are included in the
Measurement Category. In some cases this is a single measure.

Part 3 - Measurement Selection and Specification Tables

Page 122

• Limitations - the limitations of the measures in the category. The information
helps in providing the required type of measurement information.

• Related Measurement Categories - references to other PSM Measurement
Categories that are useful if used in conjunction with the measures in this
category. These related categories provide information that supports a more
complete analysis of the issue in question.

• Additional Information - supplementary information that applies to the measures
in the Measurement Category. This information may define concepts or terms
used in the measures, or may amplify selection guidance. This information is not
included for all Measurement Category tables.

• Example Indicator - Part 5 of PSM includes sample graphs of measurement
indicators derived from selected measures. This section indicates the measures
selected from the categories that were selected for illustration in Part 5.

Measurement Category - Product Size and Stability
Issue - Growth and Stability

Product Size and Stability measures quantify the physical size of a software product. Product size is a
critical factor for estimating development schedule and cost. These measures also provide information
about the amount and frequency of change to software products, which is especially critical late in the
development.

Project Application
• Basic measurement category applicable to most projects.
• Measures in this category are usually selected based on domain characteristics.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Lines of Code
• Components
• Words of Memory
• Database Size

Limitations
• Product size measures do not always directly map to the amount of functionality in the system.
• Measures in this category do not generally address software quality, complexity, or difficulty.
• Accurate estimates are dependent on the availability of good historical data or engineering experience.
• Reported changes of software product size often occur too late to correct the underlying problems.

Measurement of requirements or design changes provides earlier warnings of related problems.

Related Measurement Categories
• Productivity
• Functional Size and Stability
• Work Unit Progress

Additional Information
• Components may be defined differently for each project. Components can be units, configuration items

(CIs), objects, interfaces, screens, reports, packages, icons, primitives, or other measurable product
structures. Problem reports and change requests are sometimes considered to be components,
especially with respect to software maintenance activities during the sustaining engineering phase.
COTS/GOTS and other non-developed or reusable software products can also be counted as
components. Some components can be aggregated to form higher level components (for example,
units to CIs to versions). These can be referred to as sub-components.

Example Indicator(s)
• Software Size (PSM Part 5, Section 4.7)

Additional Information
• provides supplemental

definition and
application information
for the included
measures

• not included for all
categories

Example Indicator
• identifies the

measure(s) in the
category used for the
sample indicators in
PSM Part 3

Measures Included in this
Category

• lists measures included
in category

• each measure has an
individual
Measurement
Description Table

Project Application
• application of the

measure to specific
types of programs

Limitations
• explains what

information the
measures in the
category do not
provide

Related Measurement
Categories

• lists other
measurement
categories which
contain measures
useful to analyze with
the measures listed in
this category

Measurement Category
and Issue

• identifies measurement
category and common
software issue

Definition & Description
• type of measurement

information category
provides

• how the information is
used

Figure 3.3-2. Measurement Category Table “Roadmap”

1.4 MEASUREMENT DESCRIPTION TABLES

The Measurement Description Tables serve two purposes and provide two types of
information. The first type of information is the selection guidance. This information

Measurement Selection and Specification Tables

Page 123

helps to determine if a measure will effectively address an identified issue. The
selection guidance also helps to determine if the measure is applicable to the
characteristics of the project and the nature of the associated management and
technical processes. The second type of information in the Measurement Description
Tables is the specification guidance. This information is used to define the specific
data and the implementation requirements for each selected measure.

Some specification guidance is common to all measures. Rather than repeat this
information in every Measurement Description Table, it is summarized in a single
General Measurement Specification Table. This table is a unique Measurement
Description Table that applies to all measures. It should be used in conjunction with
each of the individual Measurement Description Tables when specifying measurement
data and implementation requirements.

Figure 3.3-3 is a “roadmap” to the information contained in a Measurement
Description Table. The following is a summary of the type of information provided in
the header and footer sections of the table.

• Measure, Measurement Category, and Issue - the specific Measure, the
associated Measurement Category, and the corresponding Common Software
Issue.

• Definition and Description - the definition of the measure and a description of the
measurement information that it provides. It also explains how the measure is
used and how effective it is in addressing the issues.

• This Measure Answers Questions Such As - typical questions that are addressed
by the measure.

Selection Guidance

The following portions of the Measurement Description Tables help to determine if the
measure should be selected.

• Project Application - information that helps to identify if the measure is
applicable to specific types of projects. The information addresses applicability
with respect to the project life-cycle phase, functional domain, and the size, scope,
type, and origin (new reused, COTS, etc.) of the software. This information
specifically addresses applying the measure to real-time, data-intensive, and other
types of systems. It also identifies the life-cycle phases in which the measure is
most useful, and the overall use of the measure within government and industry.

• Process Integration - helps determine the applicability of the measure to different
program and technical management processes. The information addresses

Part 3 - Measurement Selection and Specification Tables

Page 124

particular program management practices, data availability and cost, and other
process characteristics.

• Usually Applied During – defines the applicability of the measure to different
software process activities. These activities include requirements analysis, design,
implementation, and integration and test. These activities should not be construed
to be sequential, but can take place during any phase of the software life cycle, or
concurrently during the same phase. The information in this section also
addresses the type of data (estimates or actuals) that is generally available with
respect to the identified software activities.

Specification Guidance

The following portions of the Measurement Description Tables help to specify the data
and implementation requirements for selected measures.

• Typical Data Items - the data items that are typically measured and collected.
For example, the Effort measure has the Number of Labor Hours as one of its
data items.

• Typical Attributes – the descriptive data on a characteristic or property assigned
to a measurement data item that is used to sort and correlate the data in a project.
For example, the number of lines of code data item for the Lines of Code measure
includes the attributes of language, source, and version.

• Typical Aggregation Structure - the structure by which data is organized and
aggregated to the project level. The typical aggregation structures that are
described in this Guide are based on either the software activity (such as
requirements analysis, design, implementation, and integration and test), the
components (such as CI or unit), or the functions. The Work Breakdown
Structure (WBS) is a combination of activity and component structures.

• Typically Collected for Each - the software activity or design component level at
which the developer typically collects the data items for the measure.

• Data Items - Additional Information (Optional) – provides additional
information to help specify the data items for the measure, or provides alternatives
to the specified data items.

• Count Actuals Based On - typical activities or exit criteria for the listed data
elements. This information helps to determine when a measure is counted as an
actual, or when an activity or event is complete. Normally only one of these
options is used.

Measurement Selection and Specification Tables

Page 125

Measure - Lines of Code
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified, or deleted. The total number of lines of code is a well understood measure that allows estimation of
project cost, required effort, schedule, and productivity. Changes in the number of lines of code indicate
development risk due to product size volatility and additional work that may be required.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in

weapons applications.
• Included in most DoD measurement policies and

some commercial measurement practices.
• Used for projects of all sizes. Less important for

projects where little code is generated such as those
using automatic code generation and visual
programming environments.

• Most effective for traditional high order languages
such as Ada, FORTRAN, and COBOL. Not generally
used for fourth-generation languages such as Natural
and ECOS.

• Not usually tracked for COTS software unless
changes are made to the source code.

• Useful during project planning, development, and
sustaining engineering phases.

Process Integration
• Define Lines of Code for each language. Lines of

code from different languages are not equivalent.
• You may want to calculate an effective or equivalent

SLOC count based on source. New and modified
lines would count at 100% while reused code would
count at a lower percentage (to address the effort
required to integrate and test the reused code).

• It is sometimes difficult to generate accurate
estimates early in the project, especially for new
types of projects.

• Estimates should be updated on a regular basis.
• Can be difficult estimating and tracking lines of code

by source and type.
• Actuals can easily be counted using automated tools.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Lines of Code (LOC)
• Number of LOC Added
• Number of LOC Deleted
• Number of LOC Modified

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or

COTS)
• Language
• Delivery Status (deliverable, non-

deliverable)
• End-Use Environment (operational,

support)

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

LOC Definition May Include
• Logical Lines
• Physical Lines
• Comments
• Executables
• Data Declarations
• Compiler Directives

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How accurate was the size estimate that the schedule and effort plans were based on?
• How much has the software size changed? In what components have changes occurred?
• Has the size allocated to each incremental build changed? Is functionality slipping to later builds?

Measure, Measurement
Category and Issue

• identifies the measure,
related measurement
category, and common
software issue

Definition & Description
• measure definition
• type of information the

measure provides
• how the measure is

used

Program Application
• applicability of the

measure to specific
types of programs

• applicability to specific
domains, system
characteristics

• DoD and industry use

Process Integration
• applicability of the

measure to specific
processes

• addresses availability
and cost of
measurement data

Typical Data Items
• Identifies typical data

that is collected for the
measure

Typical Attributes
• characteristics or

properties used to
categorize the data

Typical Aggregation
Structure

• the levels used to
aggregate data to the
system level including
component, function,
or software activity

Typically Collected for
Each

• identifies typical
structure level against
which the data
elements are
measured

LOC Definition May
Include

• provides information
which augments or
clarifies the data item
definition

Count Actuals Based on
• identifies typical exit

criteria used to
determine when a
measure is counted as
an actual

Usually Applied During
• identifies applicable

software activities and
whether estimates or
actuals are generally
available

This Measure Answers
Questions Such as

• identifies common
questions addressed
by the measure

Figure 3.3-3. Measurement Description Table “Roadmap”

1.5 GENERAL MEASUREMENT SPECIFICATION TABLE

The General Measurement Specification Table should be used in conjunction with the
individual Measurement Description tables when specifying the data and
implementation requirements for the selected measures. The specification guidance
applies to all measures and summarizes the general requirements for the sample
measures that are presented in the Guide.

1.6 ADDITIONAL GUIDANCE

Most of the measures listed in the Measurement Description Tables are basic
measures that quantify a single software characteristic. Some of the measures, such as
those that fall under the common issues of Product Quality and Development
Performance, are actually composite measures that are derived from other measures
that are not listed in this Guide. For example, Product Size/Effort ratio is a composite
Development Performance measure. This measure is calculated using the Lines of
Code measure under the Growth and Stability issue, and the Effort measure under the

Part 3 - Measurement Selection and Specification Tables

Page 126

Resources and Cost issue. The composite measures, which also include Defect
Density, are included on separate tables, since they are widely used to address different
issues.

Measures in the Technology Impacts category should be defined on a project-by-
project basis to provide insight into the software technologies and processes that are
critical to the success of the project. Measures in this category are generally defined to
track those software technologies that are highly “leveraged,” or heavily relied upon
for the success of the project. Many of the Technical Adequacy measures are
derivatives of measures categorized under other common issues. For example, a
project’s planned cost and schedule may be based on large increases in development
productivity from the use of a substantial amount of reused software. In this case, a
measure may be defined that provides information on the relative growth of the reused
vs. the newly developed code. Growth in the development of new code, with
concurrent reductions in the planned amount of reused code, may indicate a problem.
The problem may be that the reused code does not satisfy the requirements as
expected, and that the actual productivity may be much less than anticipated.

Measurement Selection and Specification Tables

Page 127

CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND

SPECIFICATION TABLES

The following measurement tables are grouped according to the six Common Software
Issues that are defined in this Guide. Each issue includes the applicable Measurement
Category Table and associated Measurement Description Tables according to the
mapping structure in Figure 3.3-1. The pertinent Measurement Description Tables
immediately follow each Measurement Category Table. The General Measurement
Specification table is also included at the end of the section.

Part 3 - Measurement Selection and Specification Tables

Page 128

Measurement Selection and Specification Tables

Page 129

SCHEDULE AND PROGRESS

MEASUREMENT TABLES

• Milestone Performance

• Work Unit Progress

• Incremental Capability

Part 3 - Measurement Selection and Specification Tables

Page 130

Measurement Selection and Specification Tables

Page 131

Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Performance measures provide basic schedule and progress information for key software
development activities and events. The measures also help to identify and assess dependencies among
software development activities and events. Monitoring changes in schedules allows the project manager to
assess the risk in achieving future milestones.

Project Application
• Basic measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Milestone Dates

Limitations
• The measures in this category do not address the degree of individual activity completion or the amount of

effort to complete a scheduled activity or task.
• These measures do not address the relative importance of key activities (except for the identification of

critical path activities).

Related Measurement Categories
• Work Unit Progress
• Productivity

Example Indicator(s)
• Milestone Schedule (PSM Part 5, Section 3.1)
• Milestone Progress (PSM Part 5, Section 4.1)
• Milestone Progress (PSM Part 5, Section 4.21)

Part 3 - Measurement Selection and Specification Tables

Page 132

Measure - Milestone Dates
Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Dates measure consists of the start and end dates for software activities and events. The
measure provides an easy to understand view of the status of scheduled software activities and events.
Comparison of plan and actual milestone dates provides useful insight into both significant and repetitive
schedule slips at the activity level.

Selection Guidance

Project Application
• Basic measure applicable to all domains.
• Included in most DoD measurement policies and

commercial measurement practices.
• Generally applicable to all sizes and types of

projects.
• Useful during project planning, development, and

sustaining engineering phases. Some sustaining
engineering projects may be considered level of effort
tasks and may not have associated milestones (or
they may have only limited milestones such as date
change assigned, date change closed).

Process Integration
• Required data is generally easily obtained from

project scheduling systems and/or documentation.
Data should be focused on software activities and
events, particularly key items affecting the critical
path or risk items.

• More detailed milestones provide a better indication
of progress and allow earlier identification of
problems.

• If dependency data is collected, slips in related
activities can be more easily and accurately
projected and assessed.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Start Date
• End Date
• Dependent Activity

Typical Attributes
• Version
• Organization

Typical Aggregation Structure
• Software activity
• Component

Typically Collected for Each
• Key software activity
• CI or equivalent

Count Actuals Based On
• Customer sign-off
• Action items closed
• Documents baselined
• Milestone review held
• Successful completion of tasks

This Measure Answers Questions Such As
• Is the current schedule realistic?
• How many activities are concurrently scheduled?
• How often has the schedule changed?
• What is the projected completion date for the project?

Measurement Selection and Specification Tables

Page 133

Measurement Category - Work Unit Progress
Issue - Schedule and Progress

Work Unit Progress measures address progress based on the completion of work units that combine
incrementally to form a complete software activity or product. If objective completion criteria are defined, Work
Unit Progress measures are extremely effective for assessing progress at any point in the project. They are
used for projecting completion dates for the activity or product.

Project Application
• Basic measurement category applicable to most projects.
• Applies to all software process models.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• Component Status
• Requirement Status
• Test Case Status
• Paths Tested
• Problem Report Status
• Reviews Completed
• Change Request Status

Limitations
• These measures do not weight difficult or critical activities or products. All activities are usually assumed

to be of the same level of importance.

Related Measurement Categories
• Milestone Performance
• Personnel
• Product Size and Stability
• Functional Size and Stability

Additional Information
• Components may be defined differently for each project. Components can be units, configuration items

(CIs), objects, interfaces, screens, reports, packages, icons, primitives, or other measurable product
structures. Problem reports and change requests are sometimes considered to be components, especially
with respect to software maintenance activities during the sustaining engineering phase. COTS/GOTS and
other non-developed or reusable software products can also be counted as components. Some
components can be aggregated to form higher level components (for example, units to CIs to versions).
These can be referred to as sub-components. In the remaining tables, we will assume a CI to unit
breakdown of the components.

Example Indicator(s)
• Design Progress (PSM Part 5, Section 3.2)
• Design Progress (PSM Part 5, Section 4.2)

Part 3 - Measurement Selection and Specification Tables

Page 134

Measure - Component Status
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Component Status measure counts the number of software components that have completed a specific
development activity. Early in the development activity, planning changes should be expected as the
development activity is completed. Later in the process, an increase in the planned number of components can
be an indication of unplanned or excessive growth. A comparison of planned and actual components is very
effective for assessing development progress.

Selection Guidance

Project Application
• Applicable to all domains.
• Used on medium to large projects.
• Useful during development and sustaining

engineering phases.
• Tracking progress through early development

activities, such as design or coding, is not generally
done on projects without a design activity such as
sustaining engineering projects that are focused on
problem resolution or COTS integration projects.

• Tracking progress during the integration and test
activities may be done for projects with major reuse
or COTS integration.

Process Integration
• Easier to collect if formal reviews, inspections, or

walkthroughs are included in the development
process.

• Data sometimes available from configuration
management systems or development tools.

• Data is generally available if there is a mature and
disciplined development process.

• Component status during test activities requires a
disciplined testing process with separate tests per
component(s) allocated to defined test sequences.

• Component status during test activities can be
applied for each unique test sequence (i.e. CI test,
integration test), including "dry-runs.”

• Component status during test activities is generally
one of the more difficult work unit progress measures
to collect since most integration and test activities
are based on requirements or functions instead of
components.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Units
• Number of Units Complete

Typical Attributes
• Version
• Software Activity

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Software Activity may be defined as
• Preliminary Design
• Detailed Design
• Code
• Unit Test
• CI Test

Count Actuals Based On
• Completion of component reviews,

inspections, or walkthroughs
• Successful completion of specified test
• Release to configuration management
• Resolution of action items

This Measure Answers Questions Such As
• Are components completing development activities as scheduled?
• Is the planned rate of completion realistic?
• What components are behind schedule?

Measurement Selection and Specification Tables

Page 135

Measure - Requirement Status
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Requirement Status measure counts the number of defined requirements that have been allocated to
software components and test cases and the number that have been successfully tested. The measure is an
indication of software design and test progress. The measure addresses the degree to which required
functionality has been successfully demonstrated against the specified requirements, as well as the amount of
testing that has been performed. This measure provides an excellent measure of test progress. This measure
is also known as "Breadth of Testing.”

Selection Guidance

Project Application
• Applicable to all domains.
• Useful during development and sustaining

engineering phases. Not generally used on projects
without a requirements or design activity such as
sustaining engineering projects that are focused on
problem resolution. Not generally used on projects in
which requirements cannot be traced to test cases.

Process Integration
• Requires disciplined requirements traceability and

testing processes to implement successfully.
Allocated requirements should be testable and
mapped to test sequences. If an automated design
tool is used, the data is more readily available.

• Can be applied for each unique test sequence (i.e. CI
test, integration test, system test, and regression
test), including "dry-runs.”

• One of the more difficult work unit progress
measures to collect since requirements often do not
directly map to components, test cases, and test
procedures. It is also sometimes difficult to
objectively determine if a requirement has been
successfully tested.

• Early in a project, the requirements baseline is
limited to high-level specifications. Later on the
requirements baseline expands and measurement
data is traceable to components and test cases.

• Some requirements may not be testable until late in
the testing process. Others are not directly testable.
Some may be verified by inspection

• Both stated and derived requirements may be
counted.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Requirements
• Number of Requirements Traced to

Detailed Specifications
• Number of Requirements Traced to

Software Components
• Number of Requirements Traced to

Test Specifications
• Number of Requirements Tested

Successfully

Typical Attributes
• Version
• Specification
• Test Sequence

Typical Aggregation Structure
• Function

Typically Collected for Each
• Requirement Specification

Count Actuals Based On
• Completion of specification review
• Baselining of specifications
• Baselining of Requirements Traceability

Matrix
• Successful completion of all tests in

the appropriate test sequence

This Measure Answers Questions Such As
• Have all of the requirements been allocated to software components?
• Are the requirements being tested as scheduled?
• Is implementation of the requirements behind schedule?

Part 3 - Measurement Selection and Specification Tables

Page 136

Measure - Test Case Status
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Test Cases Status measure counts the number of test cases that have been attempted and those that
have been completed successfully. This measure can be used in conjunction with the Requirement Status
measure to evaluate test progress. This measure allows assessment of software quality, based on the
proportion of attempted test cases that are successfully executed. This measure is one of the best measures
of test progress.

Selection Guidance

Project Application
• Applicable to all domains.
• Generally applicable to all sizes and types of

projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Need disciplined test planning and tracking

processes to implement successfully.
• Can be applied for each unique test sequence (i.e. CI

test, integration test, system test, and regression
test), including "dry-runs.”

• There should be a mapping between defined test
cases and requirements. This allows an analysis of
what functions are passing test and what ones are
not.

• Easy to collect. Most projects define and allocate a
quantifiable number of test cases to each software
test sequence.

Usually Applied During
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Test Cases
• Number of Test Cases Attempted
• Number of Test Cases Passed

Typical Attributes
• Version
• Test Sequence

Typical Aggregation Structure
• Software Activity (Test)

Typically Collected for Each
• Activity Test

Alternatives to Test Cases Include
• Test Procedures
• Test Steps
• Use/Case Scenarios
• Functional Threads

Count Actuals Based On
• Successful completion of each test

case in the appropriate test sequence

This Measure Answers Questions Such As
• Is test progress sufficient to meet the schedule?
• Is the planned rate of testing realistic?
• What functions are behind schedule?

Measurement Selection and Specification Tables

Page 137

Measure - Paths Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Paths Tested measure counts the number of logical paths successfully tested. The measure reports the
degree to which the software has been successfully demonstrated and indicates the amount of testing that has
been performed. This measure is also called "Depth of Testing.”

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to most types of projects. Especially

important for those with high reliability requirements,
security implications, or catastrophic failure potential.

• Not generally used for COTS or reused code.
• Useful during development and sustaining

engineering phases.

Process Integration
• Usually applied on a cumulative basis across all test

sequences (i.e. CI test, integration test, system test,
and regression test), so that each path is tested by
the time all testing is complete.

• Often used in conjunction with Cyclomatic
Complexity.

• Difficult to collect - requires the use of test tools that
can verify test paths covered. These test tools often
require instrumentation of the code.

• Difficult to use on large projects due to the large
number of paths.

Usually Applied During
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Paths
• Number of Paths Tested
• Number of Paths Tested Successfully

Typical Attributes
• Version
• Test Sequence

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

Alternative to Paths Include
• Executable Statements
• Decisions

Count Actuals Based On
• Successful completion of each test in

the appropriate test sequence

This Measure Answers Questions Such As
• Have all of the paths been successfully tested?
• What percentage of the paths are represented in the testing approach?

Part 3 - Measurement Selection and Specification Tables

Page 138

Measure - Problem Report Status
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Problem Report Status measure counts the number of software problems reported and resolved. This
measure provides an indication of product maturity and readiness for delivery. The rates at which problem
reports are written and closed can be used to estimate test completion. This measure can also be used as an
indication of the quality of the problem resolution process.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to all sizes and types of projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Many projects have acceptance criteria based on the

number of open problem reports, by priority. This
measure is useful in tracking to those requirements.

• The amount of test activity has a significant impact
on this measure. Test personnel generally alternate
between testing and fixing problems. You may want
to normalize this measure using some measure of
Test Progress.

• Data is generally available. Data is easier to collect
when an automated problem tracking system is
used.

• On development projects, data is generally available
during integration and test. Problem report data is
more difficult to collect earlier (during requirements
analysis, design, and implementation), because the
formal problem reporting system is usually not in
place and rigidly enforced. When this data is
available, it provides very good progress information.
An inspection or peer review process can provide this
information.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Software Problems

Reported
• Number of Software Problems

Resolved

Typical Attributes
• Version
• Priority
• Valid/Invalid

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Count Actuals Based On
• Fix developed
• Fix implemented
• Fix integrated
• Fix tested

This Measure Answers Questions Such As
• Are known problem reports being closed at a sufficient rate to meet the test completion date?
• Is the product maturing (Is the problem report discovery rate going down)?
• When will testing be complete?
• What components have the most open problem reports?

Measurement Selection and Specification Tables

Page 139

Measure - Reviews Completed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Reviews Completed measure counts the number of reviews successfully completed, including both internal
developer and acquirer reviews. The measure provides an indication of progress in completing review
activities.

Selection Guidance

Project Application
• Applicable to all domains.
• Used on medium to large projects. Not generally

used on projects integrating COTS and reusable
software components.

• Useful during development and sustaining
engineering phases.

Process Integration
• Easy to collect if formal reviews are a part of the

development process.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Reviews
• Number of Reviews Scheduled
• Number of Reviews Completed

Successfully

Typical Attributes
• Version

Typical Aggregation Structure
• Component
• Software Activity

Typically Collected for Each
• CI or equivalent
• Major activity

Alternatives to Reviews Include
• Inspections
• Walkthroughs

Count Actuals Based On
• Completion of review
• Resolution of all associated action

items

This Measure Answers Questions Such As
• Are development review activities progressing as scheduled?
• Do the completed products meet the defined standards (Are components passing the reviews)?
• What components have failed their review?

Part 3 - Measurement Selection and Specification Tables

Page 140

Measure - Change Request Status
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Change Request Status measure counts the number of change requests, enhancements, or corrective
action reports affecting a product. The measure provides an indication of the amount of rework required and
performed. It only identifies the number of changes, and does not report on the functional impact of changes
or the amount of effort required to implement them.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to all sizes of projects.
• Useful during the development phase. Often used

for projects in the sustaining engineering phase. Not
generally used for integration projects incorporating
COTS and reused code.

Process Integration
• Data should be available from most projects.
• Often used on iterative developments such as

prototyping.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Software Change Requests

Written
• Number of Software Change Requests

Resolved

Typical Attributes
• Version
• Priority
• Valid/Invalid
• Approved/Unapproved
• Change Classification (defect

correction, enhancement)

Typical Aggregation Structure
• Function

Typically Collected for Each
• Requirement Specification
• Design Specification

Alternatives to Change Requests Include
• Enhancements
• Corrective Action Reports

Count Actuals Based On
• Change implemented
• Change integrated
• Change tested

This Measure Answers Questions Such As
• How many change requests have impacted the software?
• Are change requests being implemented at a sufficient rate to meet schedule?
• Is the trend of new change requests decreasing as the project nears completion?

Measurement Selection and Specification Tables

Page 141

Measurement Category - Incremental Capability
Issue - Schedule and Progress

Incremental Capability measures count the functional or product content associated with each incremental
delivery. An incremental delivery may be a product shipped to a customer or it may be an internal build
delivered to the next phase of development. These measures are used to determine if capability is being
developed as scheduled or being delayed to future deliveries.

Project Application
• Measurement category applicable to projects that have multiple deliveries.
• Applies to software process models based on incremental development.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• Build Content - Component
• Build Content - Function

Limitations
• Incremental software development often results in release of software with incomplete functions. It is

sometimes difficult to determine if all of the planned capability is completed in any given increment.
• Requires a straightforward mapping of function or component to the increment. Difficult to collect and

assess if measured components or functions are partitioned across increments.

Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Productivity

Example Indicator(s)
• Incremental Build Content (PSM Part 5, Section 3.3)

Part 3 - Measurement Selection and Specification Tables

Page 142

Measure - Build Content - Component
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Component measure identifies the components that are included in incremental builds.
The measure indicates progress in the incremental products. Build content will often be deferred or removed in
order to preserve the scheduled delivery date. It is easier to track incorporation of capability by component
(rather than by function), since it is relatively easy to detect whether or not a component has been integrated.
However, this provides less information, since the correlation between components and functionality is not
always well defined.

Selection Guidance

Project Application
• Applicable to all domains.
• Generally applicable to all sizes and types of

projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a formal, detailed list of content by

increment. This content must be defined at the
component level.

• Easy to collect, especially if the project has a detailed
tracking mechanism.

• To effectively measure the content of the software at
the version level, the lower level units that comprise
the version must individually be complete with
respect to defined criteria.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Units
• Number of Units Integrated

Successfully

Typical Attributes
• Version

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

Count Actuals Based On
• Successful integration
• Successful testing

This Measure Answers Questions Such As
• Are components being incorporated as scheduled?
• Will each increment contain the specified components?
• What components have to be deferred or eliminated?
• What components have been added?
• Is development risk being deferred?

Measurement Selection and Specification Tables

Page 143

Measure - Build Content - Function
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Function measure identifies the functional content of incremental builds. The measure
indicates the progress in the incorporation of incremental functionality. Build content will often be deferred or
removed in order to preserve the scheduled delivery date.

Selection Guidance

Project Application
• Applicable to all domains.
• Generally applicable to all sizes and types of

projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a formal, detailed list of functions by

increment.
• Feasible to collect if the project has a detailed

tracking mechanism. Easier to collect if use/case or
functional threads are defined.

• It is often difficult to identify whether a function is
incorporated in its entirety. A considerable amount
of testing and analysis must be done to determine if
all aspects of a function are incorporated.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Sub-Functions
• Number of Sub-Functions Integrated

Successfully

Typical Attributes
• Version

Typical Aggregation Structure
• Function

Typically Collected for Each
• Function or equivalent

Count Actuals Based On
• Successful integration
• Successful testing

This Measure Answers Questions Such As
• Is functionality being incorporated as scheduled?
• Will each increment contain the specified functionality?
• What functionality has to be deferred?
• Is development risk being deferred?

Part 3 - Measurement Selection and Specification Tables

Page 144

Measurement Selection and Specification Tables

Page 145

RESOURCES AND COST

MEASUREMENT TABLES

• Personnel

• Financial Performance

• Environment Availability

Part 3 - Measurement Selection and Specification Tables

Page 146

Measurement Selection and Specification Tables

Page 147

Measurement Category - Personnel
Issue - Resources and Cost

Personnel measures identify the amount of effort expended on defined software activities or products. These
measures also characterize the number and experience of personnel assigned to a project. These measures
also can be used to evaluate the rate at which people are added to and removed from a project. These
measures may be used to assess the adequacy of planned effort and analyze the actual allocation of labor.
They are essential to evaluating software development productivity. These measures are especially critical
since software is a very labor-intensive process.

Project Application
• Basic measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Effort
• Staff Experience
• Staff Turnover

Limitations
• The utility and timeliness of the measures are generally limited by the structure and capabilities of the

financial system, which may be difficult to change.
• Measures are not always available at lower levels of product and activity detail.
• Actual effort, especially uncompensated overtime, may not be reported.
• Measures may not capture the total effort applied to a project if they do not distinguish between full and

part-time personnel.

Related Measurement Categories
• Milestone Performance
• Productivity

Additional Information
• Software activities may include system engineering, software engineering, system design, software design,

software documentation, coding, unit test, CI integration and test, version integration and test, software
integration and test, system integration and test, software project management, configuration
management, quality assurance, and IV&V

Example Indicator(s)
• Effort-Schedule Tradeoff (PSM Part 5, Section 2.1)
• Effort Allocation (PSM Part 5, Section 3.4)
• Effort Allocation (PSM Part 5, Section 4.3)
• Staff Experience (PSM Part 5, Section 4.4)
• Staff Level (PSM Part 5, Section 4.18 and 4.19)

Part 3 - Measurement Selection and Specification Tables

Page 148

Measure - Effort
Measurement Category - Personnel
Issue - Resources and Cost

The Effort measure counts the number of hours or personnel applied to software tasks. This is a
straightforward, generally understood measure. It can be categorized by activity as well as by product. This
measure usually correlates directly with software cost, but can also be used to address other common issues
including Schedule and Progress and Development Performance.

Selection Guidance

Project Application
• Basic measure applicable to all domains.
• Included in most DoD measurement policies

and commercial measurement practices.
• Generally applicable to all sizes and types of

projects.
• Useful during project planning, development,

and sustaining engineering phases. Some
sustaining engineering projects with fixed
staffing levels may not track this measure.

Process Integration
• Data should be available from most projects at

the system level.
• Data usually derived from a financial

accounting and reporting system and/or
separate time card system.

• All labor hours applied to the software tasks
should be collected, including overtime. The
overtime data is sometimes difficult to collect.

• Most effective when financial accounting and
reporting systems are directly tied to software
products and activities at a low level of detail.
Counting software personnel may be difficult
because they may not be allocated to the
project on a full-time basis or they may not be
assigned to strictly software-related tasks.

• If labor hours are not explicitly provided, data
may be approximated from staffing and/or
cost data. Labor hours are sometimes
considered proprietary data.

• The labor categories and activities that
comprise the software tasks must be explicitly
defined for each organization.

• Planning data is usually based on software
estimation models or engineering judgement.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Labor Hours

Typical Attributes
• Organization
• Labor Category

Typical Aggregation Structure
• Software Activity
• Component

Typically Collected for Each
• Software Activity
• CI or equivalent

Alternatives to Labor Hours Include
• Labor Days/Weeks/Months
• Full Time Equivalents
• Number of Personnel

Alternatives to WBS Elements Include
• Software activities

Count Actuals Based On
• End of financial reporting period

This Measure Answers Questions Such As
• Are development resources being applied according to plan?
• Are certain tasks or activities taking more/less effort than expected?
• Is the effort profile realistic?

Measurement Selection and Specification Tables

Page 149

Measure - Staff Experience
Measurement Category - Personnel
Issue - Resources and Cost

The Staff Experience measure counts the total number of software personnel with experience in defined areas.
The measure is used to determine whether sufficient experienced personnel are available and used. The
experience factors are based on the requirements of each individual project (such as domain or language).
Experience is usually measured in years, which does not always equate to capability.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to projects that require particular expertise

to complete.
• Useful during project planning, development, and

sustaining engineering phases.

Process Integration
• Requires a personnel database that maintains

experience data.
• Difficult to collect and keep up-to-date as people are

added/removed from a project. Generally has to be
done manually.

• A matrix of project skill requirements versus current
personnel skills may help to track this measure and
identify necessary training areas.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Personnel
• Number of Years of Experience

Typical Attributes
• Experience Factor

Typical Aggregation Structure
• Software Activity (Organization)

Typically Collected for Each
• Organization

Experience Factor May be Defined for
• Language
• System Engineering
• Domain
• Hardware
• Application
• Platform
• Length of Time Team Together

Count Actuals Based On
• Prior to contract award
• During annual performance evaluation

This Measure Answers Questions Such As
• Are sufficient experienced personnel available?
• Will additional training be required?

Part 3 - Measurement Selection and Specification Tables

Page 150

Measure - Staff Turnover
Measurement Category - Personnel
Issue - Resources and Cost

The Staff Turnover measure counts staff losses and gains. A large amount of turnover impacts learning
curves, productivity, and the ability of the software developer to build the system with the resources provided
within cost and schedule. This measure is most effective when used in conjunction with the Staff Experience
measure. Losses of more experienced personnel are more critical.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to projects of all sizes and types.
• Useful during development and sustaining

engineering phases.

Process Integration
• Very difficult to collect on contractual projects - most

developers consider this proprietary information.
May be more readily available on in-house projects.

• It is useful to categorize the number of personnel lost
into planned and unplanned losses, since most
projects plan to add and remove personnel at various
stages of the project.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Personnel
• Number of Personnel Gained (per

period)
• Number of Personnel Lost (per period)

Typical Attributes
• None

Typical Aggregation Structure
• Software Activity (Organization)

Typically Collected for Each
• Organization

Count Actuals Based On
• End of financial reporting period
• Organization restructuring or new

organizational charts
• End of project activities or milestones

This Measure Answers Questions Such As
• How many people have been added/have left the project?
• How are the experience levels being affected by the turnover rates?
• What areas are most affected by turnover?

Measurement Selection and Specification Tables

Page 151

Measurement Category - Financial Performance
Issue - Resources and Cost

Financial Performance measures report the difference between budgeted and actual costs for a specific
product or activity. They are used to assess whether the project can be completed within cost and schedule
constraints and to identify potential cost overruns.

Project Application
• Measurement category applicable to most projects.
• Required for major DoD projects.
• Applicable to all software process models.
• Useful during project planning, development and sustaining engineering phases.

Measures Included in this Category
• Earned Value
• Cost

Limitations
• Cost and schedule performance systems can be difficult to establish for software. A detailed software

WBS must be developed that includes quantifiable exit criteria.
• Cost is not generally the best measure of software performance due to insufficient detail in the software

WBS and associated problems with reporting of actual progress.

Related Measurement Categories
• Milestone Performance
• Personnel

Example Indicator(s)
• Cost Profile (PSM Part 5, Section 3.5)
• Cost and Schedule Variance (PSM Part 5, Section 4.5)

Part 3 - Measurement Selection and Specification Tables

Page 152

Measure - Earned Value
Measurement Category - Financial Performance
Issue - Resources and Cost

The Earned Value measure is a comparison between the cost of work performed and the budget, based on
dollars budgeted per WBS element. The measure can be used to identify cost overruns and underruns.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to any project that uses a cost and

schedule system such as a Cost/Schedule Control
System Criteria (C/SCSC) or an earned value
measurement system.

• Useful during project planning, development and
sustaining engineering phases.

Process Integration
• C/SCSC data is required on most large DoD

contracts, so it is often readily available. This data
should be based on a validated cost accounting
system. If this data is not required, then the cost
measure can be used instead.

• This can be difficult to track without an automated
system tied to the accounting system.

• This data tends to lag other measurement
information due to formal reporting requirements.

• Limited in applicability if costs are planned and
expended on a level of effort basis.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Budgeted Cost of Work Scheduled

(BCWS)
• Budgeted Cost of Work Performed

(BCWP)
• Actual Cost of Work Performed

(ACWP)
• Estimate at Completion (EAC)
• Budget at Completion (BAC)

Typical Attributes
• Organization

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Software Activity

Count Actuals Based On
• WBS element complete (to defined exit

criteria)
• WBS element percent complete

(based on engineering judgment)
• WBS element percent complete

(based on underlying objective
measures)

This Measure Answers Questions Such As
• Are project costs in accordance with budgets?
• What is the projected completion cost?
• What WBS elements or tasks have the greatest variance?

Measurement Selection and Specification Tables

Page 153

Measure - Cost
Measurement Category - Financial Performance
Issue - Resources and Cost

The Cost measure counts budgeted and expended cost. The measure provides information about the amount
of money expended on a project, compared to budgets.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to projects of all sizes and types. Used to

evaluate costs for those projects that do not use
cost/schedule control system criteria (C/SCSC).

• Useful during project planning, development, and
sustaining engineering phases.

Process Integration
• Data should come from an automated accounting

system. This data tends to lag other measurement
information due to formal reporting requirements.

• Should be relatively easy to collect at a high level.
Not all projects, however, will break out software
WBS elements to a sufficient level of detail.

• This measure does not address the amount of work
completed for the costs incurred.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Cost (Dollars)

Typical Attributes
• Organization

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Software Activity

Count Actuals Based On
• WBS element complete (to defined exit

criteria)
• WBS element percent complete

(based on engineering judgment)
• WBS element percent complete

(based on underlying objective
measures)

This Measure Answers Questions Such As
• Are project costs in accordance with budgets?
• Will the target budget be achieved or will there be an overrun or surplus?

Part 3 - Measurement Selection and Specification Tables

Page 154

Measurement Category - Environment Availability
Issue - Resources and Cost

Environment Availability measures address the availability and utilization of tools and facility resources.
Resources include those used for development, integration and test, file build, sustaining engineering, or
operations. Recommended for projects where key resources are shared with or provided by other projects or
are suspected from the outset to be inadequate. These measures are used to address the adequacy of
resources.

Project Application
• Measurement category applicable to all projects with resource constraints.
• Applies to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Resource Availability Dates
• Resource Utilization

Limitations
• These measures do not address whether resources are used most effectively.

Related Measurement Categories
• Productivity
• Process Maturity

Example Indicator(s)
• Resource Utilization Indicator (PSM Part 5, Section 4.6)

Measurement Selection and Specification Tables

Page 155

Measure - Resource Availability Dates
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Availability Dates measure tracks the availability of key development and test environment
resources. The measure is used to determine if key resources are available when needed. It can be integrated
in the milestone dates measure.

Selection Guidance

Project Application
• Applicable to all domains.
• More important for projects with constrained

resources.
• Useful during development and sustaining

engineering phases.

Process Integration
• Required data is generally easily obtained from

project scheduling systems or documentation.
• Resources may include software, hardware,

integration and test facilities, tools, other equipment,
or office space. Normally only key resources are
tracked. Personnel resources are not included in this
measure - they are tracked with Effort.

• Be sure to consider all resources including those
furnished by the government, the developer, and
third party vendors.

Usually Applied During
• Requirements Analysis(Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Availability Date

Typical Attributes
• None

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Key Resource

Count Actuals Based On
• Demonstration of the intended service

This Measure Answers Questions Such As
• Are key resources available when needed?
• Is the availability of support resources impacting progress?

Part 3 - Measurement Selection and Specification Tables

Page 156

Measure - Resource Utilization
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Utilization measure counts the number of hours of resource time requested, allocated,
scheduled, available, not available (due to maintenance downtime or other problems), and used. It is used on
projects that have resource constraints, and is usually focused only on key resources. This measure provides
an indication of whether key resources are sufficient and if they are used effectively.

Selection Guidance

Project Application
• Applicable to all domains.
• More important for projects with constrained

resources. Especially important during integration
and test activities.

• Useful during development and sustaining
engineering phases.

Process Integration
• Relatively easy to collect at a high level. Easier to

collect if a resource monitor or resource scheduling
system is in place.

• Resources may include software, hardware,
integration and test facilities, tools, and other
equipment. Normally only key resources are tracked.

• Include both government-furnished and developer-
furnished resources.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Requested Hours
• Allocated Hours
• Scheduled Hours
• Available Hours
• Hours Unavailable
• Used Hours

Typical Attributes
• None

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Key Resource

Count Actuals Based On
• End of reporting period

This Measure Answers Questions Such As
• Are sufficient resources available?
• How efficiently are resources being used?

Measurement Selection and Specification Tables

Page 157

GROWTH AND STABILITY

MEASUREMENT TABLES

• Product Size and Stability

• Functional Size and Stability

Part 3 - Measurement Selection and Specification Tables

Page 158

Measurement Selection and Specification Tables

Page 159

Measurement Category - Product Size and Stability
Issue - Growth and Stability

Product Size and Stability measures quantify the physical size of a software product. Product size is a critical
factor for estimating development schedule and cost. These measures also provide information about the
amount and frequency of change to software products, which is especially critical late in the development.

Project Application
• Basic measurement category applicable to most projects.
• Measures in this category are usually selected based on domain characteristics.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Lines of Code
• Components
• Words of Memory
• Database Size

Limitations
• Product size measures do not always directly map to the amount of functionality in the system.
• Measures in this category do not generally address software quality, complexity, or difficulty.
• Accurate estimates are dependent on the availability of good historical data or engineering experience.
• Reported changes of software product size often occur too late to correct the underlying problems.

Measurement of requirements or design changes provides earlier warnings of related problems.

Related Measurement Categories
• Productivity
• Functional Size and Stability
• Work Unit Progress

Additional Information
• Components may be defined differently for each project. Components can be units, configuration items

(CIs), objects, interfaces, screens, reports, packages, icons, primitives, or other measurable product
structures. Problem reports and change requests are sometimes considered to be components, especially
with respect to software maintenance activities during the sustaining engineering phase. COTS/GOTS and
other non-developed or reusable software products can also be counted as components. Some
components can be aggregated to form higher level components (for example, units to CIs to versions).
These can be referred to as sub-components.

Example Indicator(s)
• Size-Effort Estimating (PSM Part 5, Section 2.2)
• Size-Schedule Estimating (PSM Part 5, Section 2.3)
• Software Size (PSM Part 5, Section 3.6)
• Software Size (PSM Part 5, Section 4.7)

Part 3 - Measurement Selection and Specification Tables

Page 160

Measure - Lines of Code
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified, or deleted. The total number of lines of code is a well understood measure that allows estimation of
project cost, required effort, schedule, and productivity. Changes in the number of lines of code indicate
development risk due to product size volatility and additional work that may be required.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in

weapons applications.
• Included in most DoD measurement policies and

some commercial measurement practices.
• Used for projects of all sizes. Less important for

projects where little code is generated such as those
using automatic code generation and visual
programming environments.

• Most effective for traditional high order languages
such as Ada, FORTRAN, and COBOL. Not generally
used for fourth-generation languages such as Natural
and ECOS.

• Not usually tracked for COTS software unless
changes are made to the source code.

• Useful during project planning, development, and
sustaining engineering phases.

Process Integration
• Define Lines of Code for each language. Lines of

code from different languages are not equivalent.
• You may want to calculate an effective or equivalent

SLOC count based on source. New and modified
lines would count at 100% while reused code would
count at a lower percentage (to address the effort
required to integrate and test the reused code).

• It is sometimes difficult to generate accurate
estimates early in the project, especially for new
types of projects.

• Estimates should be updated on a regular basis.
• Can be difficult estimating and tracking lines of code

by source and type.
• Actuals can easily be counted using automated tools.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Lines of Code (LOC)
• Number of LOC Added
• Number of LOC Deleted
• Number of LOC Modified

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or

COTS)
• Language
• Delivery Status (deliverable, non-

deliverable)
• End-Use Environment (operational,

support)

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

LOC Definition May Include
• Logical Lines
• Physical Lines
• Comments
• Executables
• Data Declarations
• Compiler Directives

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How accurate was the size estimate on which the schedule and effort plans were based?
• How much has the software size changed? In what components have changes occurred?
• Has the size allocated to each incremental build changed? Is functionality slipping to later builds?

Measurement Selection and Specification Tables

Page 161

Measure - Components
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Components measure counts the number of elementary software components in a software product, and
the number that are added, modified, or deleted. The total number of components defines the size of the
software product. Changes in the number of estimated and actual components indicate risk due to product
size volatility and additional work that may be required. Reporting the number of components provides product
size information earlier than other size measures, such as Lines of Code.

Selection Guidance

Project Application
• Applicable to all application domains, generally with

different component definitions.
• Applicable to all sizes and type projects.
• Not usually tracked for COTS software unless

changes are made to the source code.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a well-defined and consistent component

allocation structure (i.e. unit to CI to build).
• Required data is generally easy to obtain from

software design tools, configuration management
tools, or documentation.

• Deleted and added components are relatively easy to
collect - modified components are often not tracked.

• Volatility in the planned number of components may
represent instability in the requirements or in the
design of the software.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Units
• Number of Units Added
• Number of Units Deleted
• Number of Units Modified

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or

COTS)
• Language
• Delivery Status (deliverable, non-

deliverable)
• End-Use Environment (operational,

support)

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How many components need to be implemented and tested?
• How much has the approved software baseline changed?
• Have the components allocated to each incremental build changed? Is functionality slipping to later

builds?

Part 3 - Measurement Selection and Specification Tables

Page 162

Measure - Words of Memory
Measurement Category - Product Size and Stability
Issue - Growth and Stability

This measure counts the number of words used in main memory, in relation to total memory capacity. This
measure provides a basis to estimate if sufficient memory will be available to execute the software in the
expected operational scenarios.

Selection Guidance

Project Application
• Most commonly used for weapons systems.
• Used on any project with severe memory constraints

such as avionics or on-board flight software.
• For many projects the amount of memory reserved is

part of the defined exit criteria.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires an automated tool that measures usage

based on a defined operational profile. This is often
difficult to collect.

• Estimation may be based on modeling or by
assuming a translation factor between lines of code
and words of memory.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Words of Memory
• Number of Words of Memory Used

Typical Attributes
• Version

Typical Aggregation Structure
• Component

Typically Collected for Each
• Software CI or Hardware CI - Processor

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection
• During Test Readiness Review (TRR)
• Prior to delivery

This Measure Answers Questions Such As
• How much spare memory capacity is there?
• Does the memory need to be upgraded?

Measurement Selection and Specification Tables

Page 163

Measure - Database Size
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Database Size measure counts the number of words, records, or tables (elements) in each database. The
measure indicates how much data must be handled by the system.

Selection Guidance

Project Application
• Applicable to all domains. Often used for AIS

projects.
• Used for any project with a significant database.

Especially important for those with performance
constraints.

• Useful during development and sustaining
engineering phases.

Process Integration
• In order to estimate the size of a database, you must

develop an operational profile. This is generally a
manual process that can be difficult. Actuals are
relatively easy to collect.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Tables
• Number of Records or Entries
• Number of Words or Bytes

Typical Attributes
• Version

Typical Aggregation Structure
• Component

Typically Collected for Each
• Software CI - Database
• Hardware CI - Processor

Count Actuals Based On
• Schema design released to

configuration management
• Schema implementation released to

configuration management

This Measure Answers Questions Such As
• How much data has to be handled by the system?
• How many different data types have to be addressed?

Part 3 - Measurement Selection and Specification Tables

Page 164

Measurement Category - Functional Size and Stability
Issue - Growth and Stability

Functional Size and Stability measures quantify the functionality of a software product. Functional size may be
used to estimate development schedule and cost. These measures also provide information about the amount
and frequency of change to software functionality, which is especially critical late in the development.
Functional changes generally correlate to effort, cost, schedule, and product size changes.

Project Application
• Measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• Requirements
• Function Points
• Change Request Workload

Limitations
• Function point data collection requires a defined method or tool and is often labor intensive.
• Since function point data is usually collected manually, variations can be expected from different

measurement sources.

Related Measurement Categories
• Target Computer Resource Utilization
• Complexity
• Product Size and Stability
• Work Unit Progress

Example Indicator(s)
• Requirements Stability (PSM Part 5, Section 4.8)
• Requirements Stability (PSM Part 5, Section 4.21)

Measurement Selection and Specification Tables

Page 165

Measure - Requirements
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Requirements measure counts the number of requirements in the software and interface specifications. It
also counts the number of these requirements that are added, modified, or deleted. The measure provides
information on the total number of requirements, and the development risk due to volatility in requirements or
functional growth.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to any project that tracks requirements.

Useful for any size and type of project.
• Useful during project planning, development, and

sustaining engineering phases.
• Effective for both non-developed

(COTS/GOTS/Reuse) and newly developed software.

Process Integration
• Requires a good requirements traceability process.

If an automated design tool is used, the data is more
readily available.

• Count changes against a baseline that is under
formal configuration control. Both stated and derived
requirements may be included.

• To evaluate stability, a good definition of the impacts
of each change is required.

• It is sometime difficult to specifically define a
"requirement.” A consistently applied definition
makes this measure more effective.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Requirements
• Number of Requirements Added
• Number of Requirements Deleted
• Number of Requirements Modified

Typical Attributes
• Version
• Change Source (developer, acquirer,

user)
• Software Activity

Typical Aggregation Structure
• Function

Typically Collected for Each
• Requirement Specification

Count Actuals Based On
• Passing requirements inspection
• Release to configuration management
• SCCB Approval

This Measure Answers Questions Such As
• Have the requirements allocated to each incremental build changed? Are requirements being deferred to

later builds?
• How much has software functionality changed? What components have been affected the most?

Part 3 - Measurement Selection and Specification Tables

Page 166

Measure - Function Points
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Function Points measure provides a weighted count of the number of external inputs and outputs, logical
internal files and interfaces, and inquiries. This measure determines the functional size of software to support
an early estimate of the required level of effort. It can also be used to normalize productivity measures and
defect rates.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in AIS

applications.
• Not usually tracked for COTS or reused software.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a design process compatible with function

points.
• Should be based on a defined method such as the

IFPUG function point counting practices manual.
• Usually requires formal training.
• Requires a well-defined set of work products to

describe the requirements and design.
• Very labor intensive to estimate and count -

automated tools are scarce and have not been
validated.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Function Points
• Number of Function Points Added
• Number of Function Points Deleted
• Number of Function Points Modified

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or

COTS)

Typical Aggregation Structure
• Function
• Component

Typically Collected for Each
• Function
• CI or equivalent

Count Actuals Based On
• Completion of design documentation
• Release to configuration management
• Passing design documentation

inspections
• Delivery

This Measure Answers Questions Such As
• How big is the software product?
• How much work is there to be done?
• How much functionality is in the software?

Measurement Selection and Specification Tables

Page 167

Measure - Change Request Workload
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Change Request Workload measure counts the number of change requests affecting a product. The
measure provides an indication of the amount of work required and performed.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to all sizes of project.
• Useful during the development phase. Often used

for projects in the sustaining engineering phase. Not
generally used for integration projects incorporating
COTS and reused code.

Process Integration
• Data should be available for most projects.
• Often used on iterative developments including

sustaining engineering projects doing basic
maintenance.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Software Change Requests

Written
• Number of Software Change Requests

Open
• Number of Software Change Requests

Assigned to a Version
• Number of Software Change Requests

Resolved

Typical Attributes
• Version
• Priority
• Valid/Invalid
• Approved/Unapproved
• Change Classification (defect

correction, enhancement)

Typical Aggregation Structure
• Function

Typically Collected for Each
• Requirement Specification
• Design Specification

Count Actuals Based On
• Change submitted
• Change approved
• Change analyzed
• Change implemented
• Change integrated
• Change tested

This Measure Answers Questions Such As
• How many change requests have been written?
• Is the backlog of open change requests declining?
• Is the rate of new change requests increasing or decreasing?

Part 3 - Measurement Selection and Specification Tables

Page 168

Measurement Selection and Specification Tables

Page 169

PRODUCT QUALITY

MEASUREMENT TABLES

• Defects

• Complexity

• Rework

Part 3 - Measurement Selection and Specification Tables

Page 170

Measurement Selection and Specification Tables

Page 171

Measurement Category - Defects
Issue - Product Quality

Defect measures identify the number of problem reports, defects, and failures in the software products and/or
processes. Defect measures are some of the best measures for monitoring integration and test progress.
These measures also provide an indication of product quality.

Project Application
• Basic measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• Problem Reports
• Defect Density
• Failure Interval

Limitations
• Measures in this category do not always address the effort that is required to implement the changes. It is

possible to have one change that has a major impact on all facets of the project, or multiple changes with
minimal impact.

Related Measurement Categories
• Work Unit Progress
• Rework
• Product Size and Stability

Additional Information
• A defect is a product's non-conformance with its specification or a deficiency in the specification. A

problem report is a documented description of a defect, unusual occurrence, observation, or failure that
requires investigation and may involve software modifications. Not all problem reports identify valid
software problems. A valid software problem may be associated with multiple defects.

• While commonly tracked during implementation and integration and test, defect measures are extremely
useful when they are applied during software requirements analysis and design.

Example Indicator(s)
• Failure Trend (PSM Part 5, Section 2.4)
• Problem Report Status (PSM Part 5, Section 4.10)
• Defect Density (PSM Part 5, Section 4.12)
• Problem Report Status (PSM Part 5, Section 4.19 and 4.20)

Part 3 - Measurement Selection and Specification Tables

Page 172

Measure - Problem Reports
Measurement Category - Defects
Issue - Product Quality

The Problem Reports measure quantifies the number, status, and priority of problems reported. It provides very
useful information on the ability of a developer to find and fix defects. The quantity of problems reported reflects
the amount of development rework (quality). Arrival rates can indicate product maturity (a decrease should
occur as testing is completed). Closure rates are an indication of progress and can be used to predict test
completion. Tracking the length of time that problem reports have remained open can be used to determine
whether progress is being made in fixing problems. It helps assess whether software rework is deferred.

Selection Guidance

Project Application
• Applicable to all domains.
• Included in most DoD measurement policies and

commercial measurement practices.
• Applicable to all sizes and types of projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a disciplined problem reporting process.
• This measure is generally available during integration

and test. It is beneficial, however, to begin problem
tracking earlier during requirements, design, code,
and unit test inspections and unit tests.

• The status codes used on a project should address
at a minimum whether problem reports are open or
resolved.

• Easy to collect actuals when an automated problem
reporting system is used. Many projects do not
estimate the number of problem reports expected.

• The number of discovered problem reports should be
considered relative to the amount of discovery
activity such as number of inspections and amount of
testing.

• Many projects use the number of open problem
reports, by priority categories, as a measure of
readiness for test/delivery.

• To track age of problems reports, the project may
collect average age, median age, longest age, or by
age category (e.g. number open less than 1 month,
1-3 months, more than 3 months, etc.). Each project
must define what activities are included in age (e.g.
time from discovery to validation, integration, or
field).

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Problem Reports
• Average Age of Problem Reports

Typical Attributes
• Version
• Priority
• Problem Report Status Code
• Software Activity Originated
• Software Activity Discovered

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Count Actuals Based On
• Problem report documented
• Problem report approved by

configuration control board
• Successfully tested
• Successfully integrated
• Delivery to field

This Measure Answers Questions Such As
• How many (critical) problem reports have been written?
• Do problem report arrival and closure rates support the scheduled completion date of integration and test?
• How many problem reports are open? What are their priorities?

Measurement Selection and Specification Tables

Page 173

Measure - Defect Density
Measurement Category - Defects
Issue - Product Quality

The Defect Density measure is a ratio of the number of defects written against a component relative to the size
of that component. Either a product or function oriented size measure can be used. The measure helps
identify components with the highest concentration of defects. These components often become candidates for
additional reviews or testing, or may need to be re-written. Trends in the overall quality of a system can also
be monitored with this measure.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to all sizes and types of projects.
• Useful during development and sustaining

engineering phases.

Process Integration
• Requires a disciplined problem reporting process and

a method of measuring software size.
• Requires the allocation of defect and size data to the

associated component affected.
• In order to use functional measures of size,

requirements or function points must be allocated to
the associated components.

• Actuals are relatively easy to collect. Most projects
do not estimate defect density.

• Usually only valid, unique problem reports are
included in the defect density calculation.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Defects
• Number of Lines of Code

Typical Attributes
• Version
• Priority
• Source (new, reused, NDI, GOTS, or

COTS)
• Language

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Alternatives to Lines of Code Include
• Components
• Requirements
• Function Points

Count Actuals Based On
• Defects documented
• Defects validated
• Successfully integrated
• Successfully tested
• Delivered to field

This Measure Answers Questions Such As
• What is the quality of the software?
• What components have a disproportionate amount of defects?
• What components require additional testing or review?
• What components are candidates for rework?

Part 3 - Measurement Selection and Specification Tables

Page 174

Measure - Failure Interval
Measurement Category - Defects
Issue - Product Quality

The Failure Interval measure specifies the time between each report of a software failure. The measure is used
as an indicator of the length of time that a project can be expected to run without a software failure (during
systems operation). The measure provides insight into how the software affects overall system reliability. This
measure can be used as an input to reliability prediction models.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to any project with reliability requirements.
• Useful during development in system or operational

test. Used throughout sustaining engineering based
on reported operational failures.

Process Integration
• Requires a disciplined failure tracking process.

Easier to collect if an automated system is used.
Data can be gathered from test logs or incident
reports.

• Consider what priority of failures to include.
• Be sure to exclude non-software failures. This

includes failures caused by hardware problems as
well as user generated failures caused by operator
error or user documentation errors.

• Some projects specify threshold limits on an
acceptable number of failures per operating time for
software reliability.

• Consider whether or not to count duplicate failures.
• Consider how to count operational time on

interfacing hardware.

Usually Applied During
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Failure Identifier
• Failure Date/Time Stamp
• Operating Time to Failure

Typical Attributes
• Version
• Failure Priority

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI
• Software CI

Count Actuals Based On
• Failure documented
• Failure validated

This Measure Answers Questions Such As
• What is the project's expected operational reliability?
• How often will software failures occur during operation of the system?
• How reliable is the software?

Measurement Selection and Specification Tables

Page 175

Measurement Category - Complexity
Issue - Product Quality

Complexity measures quantify the structure of software components, based on the number and intricacy of
interfaces and branches, the degree of nesting, the types of data structures, and other system characteristics.
Complex components are generally harder to test, are more difficult to maintain, and may contain more defects
than less complex components. Complexity measures provide indications of the need to redesign and the
relative amount of testing required of any component.

Project Application
• Measurement category applicable to projects with long-term sustaining engineering requirements.
• Applicable to most software process models.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• Cyclomatic Complexity

Limitations
• Data is not generally available until after a component has been coded (although some methods evaluate

design complexity). Reducing complexity requires rework to redesign or recode the software.
• The interpretation of complexity is different for various high order languages.
• Some components must be complex to meet specified functional and performance requirements. The

measures do not account for this.

Related Measurement Categories
• Work Unit Progress
• Defects
• Product Size and Stability
• Rework

Example Indicator(s)
• Software Complexity (PSM Part 5, Section 4.13)
• Complexity (PSM Part 5, Section 4.22)

Part 3 - Measurement Selection and Specification Tables

Page 176

Measure - Cyclomatic Complexity
Measurement Category - Complexity
Issue - Product Quality

The Cyclomatic Complexity measure counts the number of unique logical paths contained in a software
component. This measure helps assess both code quality and the amount of testing required. A high
complexity rating is often indicative of a high defect rate. Components with high complexity usually require
additional reviews or testing, or may need to be re-written.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to projects with testability, reliability, or

maintainability concerns.
• Not generally used for COTS or reused code. Not

generally used on software from automatic code
generators or visual programming environments.

• Useful during development and sustaining
engineering phases.

Process Integration
• Cyclomatic complexity does not differentiate between

type of control flow. A CASE statement counts as
high complexity even though it is easier to use and
understand than a series of conditional statements.

• Cyclomatic complexity does not address data
structures.

• Operational requirements may require efficient,
highly complex code.

• Relatively easy to collect actuals when automated
tools are available (e.g. for Ada, C, C++). Estimates
are generally not derived, but a desired threshold or
expected distribution may be specified.

Usually Applied During
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Cyclomatic Complexity Rating

Typical Attributes
• Version

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

Count Actuals Based On
• Passing inspection
• Passing unit test
• Release to configuration management

This Measure Answers Questions Such As
• How many complex components exist in this project?
• What components are the most complex?
• What components should be subject to additional testing?
• What is the minimum number of reviews and test cases required to test the logical paths through the

component?

Measurement Selection and Specification Tables

Page 177

Measurement Category - Rework
Issue - Development Performance

Rework measures address the amount of rework due to defects in completed work products (documents,
design, code, test plans, testing, etc.). Rework measures are used to evaluate the quality of the software
products and development process. They provide information on how much software must be recoded and
how much effort is required for corrections.

Project Application
• Measurement category applicable to most projects.
• Applicable to most software process models. Not generally used in rapid prototype processes.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• Rework Size
• Rework Effort

Limitations
• Data collection is difficult and often labor intensive.
• Most accounting systems do not include rework effort in separate accounts (in order to track rework effort

at least one cost account needs to be added).
• Requires a consistent process for effort allocation to rework/non-rework categories.

Related Measurement Categories
• Work Unit Progress
• Product Size and Stability
• Defects
• Complexity

Example Indicator(s)
• Rework Effort (PSM Part 5, Section 4.16)
• Change Requests Implemented (PSM Part 5, Section 4.21)

Part 3 - Measurement Selection and Specification Tables

Page 178

Measure - Rework Size
Measurement Category - Rework
Issue - Development Performance

The Rework Size measure counts the number of lines of code changed to fix known defects. This measure
helps in assessing the quality of the initial development effort, by indicating the amount of total code that had to
undergo rework.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to most development processes. In a

rapid prototype process, it is only applicable to the
"final" version of the software product.

• Not generally used for non-developed code such as
COTS.

• Useful during development and sustaining
engineering phases.

Process Integration
• Very difficult to collect. Most configuration

management systems do not collect information on
changes to the size of code or reason for the change
(rework).

• Rework size should only include code changed to
correct defects. Changes due to enhancements are
not rework.

• Rework cost and schedule estimates should be
included in the development plan.

Usually Applied During
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Lines of Code (LOC) Added

Due to Rework
• Number of Lines of Code (LOC)

Deleted Due to Rework
• Number of Lines of Code (LOC)

Modified Due to Rework

Typical Attributes
• Version
• Language
• Delivery Status (deliverable, non-

deliverable)
• End-Use Environment (operational,

support)

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

Alternatives to Lines of Code Include
• Components

Count Actuals Based On
• Release to configuration management
• Passing inspection
• Passing unit test

This Measure Answers Questions Such As
• How much code had to be changed as a result of correcting defects?
• What was the quality of the initial development effort?
• Is the amount of rework impacting the cost and schedule?

Measurement Selection and Specification Tables

Page 179

Measure - Rework Effort
Measurement Category - Rework
Issue - Development Performance

The Rework Effort measure counts the amount of work effort expended to find and fix software defects.
Rework effort may be expended to fix any software product, including those related to requirements analysis,
design, code, etc. This measure helps assess the quality of the initial development effort, and identify products
and software activities requiring the most rework.

Selection Guidance

Project Application
• Applicable to all domains.
• Applicable to most development processes. In a

rapid prototype process, it is only applicable to the
"final" version of the software product.

• Not generally used for effort associated with non-
developed code such as COTS.

• Useful during development and sustaining
engineering phases.

Process Integration
• Difficult to collect. Some cost accounting systems

do not collect information on rework effort.
• For basic tracking, a single WBS/cost account

should be created to track all rework effort (per
organization). For more advanced tracking, multiple
WBS/cost accounts should be created to track
rework at the component and/or activity level.

• Rework effort should only include effort associated
with correcting defects. Effort expended due to
incorporation of enhancements is not rework.

• Rework cost and schedule estimates should be
included in the development plan.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Labor Hours Due to Rework

Typical Attributes
• Organization
• Labor Category
• Version
• Software Activity

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Software Activity

Count Actuals Based On
• End of financial reporting period

This Measure Answers Questions Such As
• How much effort was expended on fixing defects in the software product?
• What software activity required the most rework?
• Is the amount of rework impacting cost and schedule?

Part 3 - Measurement Selection and Specification Tables

Page 180

Measurement Selection and Specification Tables

Page 181

DEVELOPMENT PERFORMANCE

MEASUREMENT TABLES

• Process Maturity

• Productivity

Part 3 - Measurement Selection and Specification Tables

Page 182

Measurement Category - Process Maturity
Issue - Development Performance

Process Maturity measures address the capability of the software development processes within an
organization. The measures may be used to predict the ability of an organization to best address the issues
and constraints of a development project. These measures may also be used internally as part of a process
improvement function.

Project Application
• Measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during project planning.

Measures Included in this Category
• Capability Maturity Model Level

Limitations
• These measures may be obtained through a formal assessment for certification or through an informal

self-evaluation. Only the results of a formal certification should be accepted for source selection. A formal
certification requires an investment to achieve required capabilities and to complete the certification
process. A strong management commitment is essential.

• Process capability is usually evaluated for an organization, by assessing selected projects. The Capability
Level rating is assigned to the overall organization. That capability may not be applicable to all projects,
especially when there are significant cost and schedule constraints.

• Process capability may help to select an adequate developer, but actual performance may vary
considerably among developers at the same maturity level.

• A high level of software process maturity does not guarantee project success.
• There is subjectivity in determination of the process maturity.
• Different process assessment models may not yield comparable results

Related Measurement Categories
• Environment Availability
• Defects
• Productivity
• Rework

Example Indicator(s)
• Software Process Maturity (PSM Part 5, Section 4.14)

Measurement Selection and Specification Tables

Page 183

Measure - Capability Maturity Model Level
Measurement Category - Process Maturity
Issue - Development Performance

The Capability Maturity Model (CMM) Level measure reports the rating (1-5) of a software development
organization’s software development process, as defined by the Software Engineering Institute. The measure
is the result of a formal assessment of the organization’s project management and software engineering
capabilities. It is often used during the source selection process to evaluate competing developers.

Selection Guidance

Project Application
• Applicable to all domains.
• Normally measured at the organizational level.
• Useful during project planning, development and

sustaining engineering phases.

Process Integration
• Requires formal training and a very structured

assessment approach. Requires a significant
amount of time and effort.

• An external assessor may formally conduct an
assessment, or a self-evaluation can be performed.

• Rating may be used during source selection to help
select a developer. Assessment may be used as part
of a process improvement project.

Usually Applied During
• Not applicable

Specification Guidance

Typical Data Items
• CMM Rating

Typical Attributes
• None

Typical Aggregation Structure
• Software Activity (Organization)

Typically Collected for Each
• Organization

Count Actuals Based On
• Prior to contract award
• External or Self Evaluation

This Measure Answers Questions Such As
• Does a developer meet minimum development capability requirements?
• What is the developer's current software development capability?
• What project management and software engineering practices can be improved?
• Is the developer's software process adequate to address anticipated project risks, issues, and constraints?

Part 3 - Measurement Selection and Specification Tables

Page 184

Measurement Category - Productivity
Issue - Development Performance

Productivity measures identify the amount of software product produced per unit of effort. Productivity
measures are widely used as an indication of whether a project has adequate funding and schedule relative to
the amount of software to be developed. Assessments of actual productivity provide an indication of whether
the developer is producing code at a sufficient rate.

Project Application
• Measurement category applicable to most projects.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.
• While not explicitly included in most DoD measurement polices and commercial measurement practices,

the data necessary to calculate these measures are generally included.

Measures Included in this Category
• Product Size/Effort Ratio
• Functional Size/Effort Ratio

Limitations
• Productivity measures cannot be compared to each other, unless the same definitions are used for the

amount of product or function (in the same language) and effort (same labor categories included). This is
probably the most misused measure.

• Actual software productivity for different projects developed by the same organization can vary
considerably. A high productivity on one project does not guarantee a high productivity for others.

Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Personnel
• Milestone Performance

Example Indicator(s)
• Software Productivity (PSM Part 5, Section 3.8)
• Software Productivity (PSM Part 5, Section 4.15)

Measurement Selection and Specification Tables

Page 185

Measure - Product Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Product Size/Effort Ratio measure specifies the amount of software product produced relative to the
amount of effort expended. This common measure of productivity is used as a basic input to project planning
and also helps evaluate whether performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in

weapons systems.
• Used for projects of all size. Less important for

projects where little code is generated such as those
using automatic code generation and visual
programming environments.

• Not generally used for COTS or reused software.
• Estimates are often used during project planning.

Both estimates and actuals are used during
development and sustaining engineering to focus on
the incorporation of new functionality. Not generally
used for maintenance projects focused on problem
resolution.

Process Integration
• In order to compare productivity from different

projects, the same definitions of size and effort must
be used. For size, the same measure (e.g. Lines of
Code) must be used as well as the same definition
(e.g. logical lines). For the effort measure, the same
labor categories and software activities must be
included.

• The environment, language, tools, and personnel
experience will effect productivity achieved.

• Productivity can also be calculated using software
cost models. Many of these models include schedule
as part of the productivity equation.

• To validly calculate productivity, the effort measure
must correlate directly with the size measure. If, for
example, effort for a component is included but the
component's size is not, productivity will be lower.

• Definitions should specify those elements of effort
that are included (e.g. project management,
documentation, etc.)

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Lines of Code
• Number of Labor Hours

Typical Attributes
• Version
• Language

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Organization

Alternatives to Lines of Code Include
• Components
• Tables
• Records or Entities

Alternatives to Labor Hours Include
• Labor Days/Weeks/Months
• Full Time Equivalents
• Number of Personnel

Count Actuals Based On
• Completion of Version
• Components implemented
• Components integrated and tested

This Measure Answers Questions Such As
• Is the developer’s production rate sufficient to meet the completion date?
• How efficient is the developer at producing the software product?
• Is the planned/required software productivity rate realistic?

Part 3 - Measurement Selection and Specification Tables

Page 186

Measure - Functional Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Functional Size/Effort Ratio measure specifies the amount of functionality produced relative to the amount
of effort expended. This measure is used as a basic input to project planning and also helps evaluate whether
performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in AIS

systems.
• Useful when product size measures are not available.
• Useful during project planning, development, and

sustaining engineering phases.

Process Integration
• In order to compare productivities from different

projects, the same definitions of size and effort must
be used. For size, the same measure (e.g. Function
Points) must be used as well as the same counting
practices. For the effort measure, the same labor
categories and software activities must be included.

• The environment, language, tools, and personnel
experience will effect productivity achieved.

• Productivity can also be calculated using software
cost models. Many of these models include
schedules as part of the productivity equation.

• To validly calculate productivity, the effort measure
must correlate directly with the size measure. If, for
example, effort for a function is included but the
functional size is not, productivity will be lower.

• Useful early in the project, before actual product size
data is available.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Typical Data Items
• Number of Requirements
• Number of Labor Hours

Typical Attributes
• Version

Typical Aggregation Structure
• Software Activity

Typically Collected for Each
• Organization

Alternatives to Requirements Include
• Function Points

Alternatives to Labor Hours Include
• Labor Days/Weeks/Months
• Full Time Equivalents
• Number of Personnel

Count Actuals Based On
• Completion of Version
• Functions implemented
• Functions integrated and tested

This Measure Answers Questions Such As
• Is the developer producing the software at a sufficient rate to meet the completion date?
• How efficient is the developer at producing the software?
• Is the planned/required software productivity rate realistic?

Measurement Selection and Specification Tables

Page 187

TECHNICAL ADEQUACY

MEASUREMENT TABLES

• Target Computer Resource Utilization

• Technical Performance

• Technology Impacts

Part 3 - Measurement Selection and Specification Tables

Page 188

Measurement Category - Target Computer Resource Utilization
Issue – Technical Adequacy

Target Computer Resource Utilization measures are used to assess the adequacy of the target hardware. High
computer resource utilization can have serious impacts on software performance, cost, schedule, and
supportability. High utilization may require hardware changes or software redesign. During development,
reserve capacity is often defined to allow for future growth due to changes or additional requirements.

Project Application
• Measurement category applicable to projects with target hardware resource constraints.
• Applicable to all software process models.
• Useful during development and sustaining engineering phases.

Measures Included in this Category
• CPU Utilization
• CPU Throughput
• I/O Utilization
• I/O Throughput
• Memory Utilization
• Storage Utilization
• Response Time

Limitations
• These measures are often difficult to define, estimate, and collect. Some computer systems and CASE

tools do provide automated status reporting of some of the measures in this category.

Related Measurement Categories
• Product Size and Stability
• Complexity
• Rework

Example Indicator(s)
• Response Time (PSM Part 5, Section 3.7)
• Response Time (PSM Part 5, Section 4.9)

Measurement Selection and Specification Tables

Page 189

Measure - CPU Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The CPU Utilization measure counts the estimated or actual proportion of time the CPU is busy during a
measured time period. This measure indicates whether sufficient CPU resources will be available to support
operational processing. This measure is also used to evaluate whether CPU reserve capacity will be sufficient
for high-usage operations or for added functionality.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Useful for any project with a dedicated processor and

critical performance requirements. Not generally
used on projects located on shared processors.

• Useful during development and sustaining
engineering phases.

Process Integration
• Requires a tool that measures usage based on a

defined operational profile during a measured period
of time.

• The operational profile (load levels) has a significant
impact on this measure. Test should include both
normal and stress levels of operation. The
operational profile for each test should be provided
with the data.

• Estimates are very difficult to derive and require
significant simulation or modeling support.
Estimates must be developed early to impact design
decisions.

• Actual processor utilization is often provided as an
overhead function of an operating system and is
more easily obtained.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Time Processor is Busy
• Measured Time Period
• Specified Processor Utilization Limit

Typical Attributes
• Version
• Operational profile

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - Processor

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient CPU resources been provided?
• Do CPU estimates appear reasonable? Have large increases occurred?
• Can the CPU resources support additional functionality?

Part 3 - Measurement Selection and Specification Tables

Page 190

Measure - CPU Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The CPU Throughput measure provides an estimate or actual count of the number of processing tasks that can
be completed in a specified period of time. This measure provides an indication of whether or not the software
can support the system’s operational processing requirements.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Useful for any project with a dedicated processor and

critical timing requirements. Not generally used on
projects located on shared processors.

• Useful during development and sustaining
engineering phases.

Process Integration
• Actuals can be based on real-time observation or

may require a tool that measures task completion
based on a defined operational profile. This data is
generally easy to collect.

• The operational profile has a significant impact on
this measure. Tests should include both normal and
stress levels of operation. The operational profile for
each test should be provided with the data.

• Estimates are very difficult to derive and require
significant simulation or modeling support.
Estimates must be developed early to impact design
decisions.

• The measurement methodology for CPU throughput
is critical for meaningful results. In many cases the
measure is based on average CPU throughput. The
averaging period used is therefore important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Requests for Service
• Number of Requests for Service

Completed
• Measured Time Period
• Specified Processor Throughput Limit

Typical Attributes
• Version
• Operational Profile

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - Processor

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient CPU resources been acquired?
• Do CPU estimates appear reasonable? Have large increases occurred?

Measurement Selection and Specification Tables

Page 191

Measure - I/O Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The I/O Utilization measure calculates the proportion of time the I/O resources are busy during a measured
time period. This measure indicates whether I/O resources are sufficient to support operational processing
requirements.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for high traffic systems.
• Network I/O may also be measured under this

measure.
• Useful during development and sustaining

engineering phases.

Process Integration
• Actual measurement requires a tool that measures

usage based on a defined operational profile during a
measured period of time. Actuals are relatively easy
to collect.

• The operational profile has a significant impact on
this measure. The test cases should include both
normal and stress levels of operation. The
operational profile for each test should be provided
with the data.

• Estimates are very difficult to derive and require
significant simulation or modeling support.
Estimates must be developed early to impact design
decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Time I/O Resource is Busy
• Time I/O Resource is Available
• Measured Time Period
• Specified I/O Channel Utilization Limit

Typical Attributes
• Version
• Operational Profile

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - I/O Device

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Do the I/O resources allow adequate data traffic flow?
• Can additional data traffic be provided after system delivery?
• Should I/O resources be expanded?

Part 3 - Measurement Selection and Specification Tables

Page 192

Measure - I/O Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The I/O Throughput measure reports the rate at which the I/O resources send and receive data, according to
the number of data packets (bytes, words, etc.) successfully sent or received during a measured time period.
This measure indicates whether the I/O resources are sufficient to support the system's operational processing
requirements.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for high traffic systems.
• Network I/O may also be measured under this

measure.
• Useful during development and sustaining

engineering phases.

Process Integration
• Actual measurement requires a tool that measures

usage based on a defined operational profile during a
measured period of time. This is relatively easy to
collect.

• The operational profile has a significant impact on
this measure. Tests should include both normal and
stress levels of operation. The operational profile for
each test should be provided with the data.

• Estimates are very difficult to derive and require
significant simulation or modeling support.
Estimates must be developed early to impact design
decisions.

• The measurement methodology for I/O throughput is
critical for meaningful results. In many cases the
measure is based on average I/O throughput,
therefore, the averaging period used is very
important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Data Packets
• Number of Data Packets Successfully

Sent
• Number of Data Packets Successfully

Received
• Measured Time Period
• Specified I/O Throughput Limit

Typical Attributes
• Version
• Operational Profile

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - I/O Device

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Can the software design handle the required amount of system data in the allocated time?
• Can the software handle additional system data after delivery?

Measurement Selection and Specification Tables

Page 193

Measure - Memory Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The Memory Utilization measure indicates the proportion of memory that is used during a measured time
period. This measure addresses random access memory (RAM), read only memory (ROM), or any other form
of electronic, volatile memory. This measure specifically excludes all types of magnetic and optical media (e.g.
disk, tape, CD-ROM, etc.). This measure provides an indication of whether the memory resources can support
the system’s operational processing requirements.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for memory constrained systems.
• Useful during development and sustaining

engineering phases.

Process Integration
• Measure and monitor different types of memory (e.g.

RAM, ROM) separately. Specify the size of a word
(e.g. 16 bit, 32 bit, etc.) for each memory type.

• Actual measurement requires a tool that measures
usage based on a defined operational profile during a
measured time period or task. This is relatively easy
to collect.

• The operational profile has a significant impact on
this measure. The tests should include both normal
and stress levels of operation. The operational
profile for each test should be provided with the data.

• Estimates are very difficult to derive and require
significant simulation or modeling support.
Estimates must be developed early to impact design
decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Memory
• Memory Available
• Memory Used
• Measured Time Period
• Specified Memory Utilization Limit

Typical Attributes
• Version
• Operational Profile

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - Processor

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Will the software fit in the processors?
• Can the software size increase after system delivery as needed to incorporate new functionality?
• What is the risk that system errors will be caused by lack of storage space?

Part 3 - Measurement Selection and Specification Tables

Page 194

Measure - Storage Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The Storage Utilization measure reports the proportion of storage capacity used. The measure provides an
indication of whether storage resources are sufficient to store projects and/or the anticipated volume of
operational data generated by the system. The term "storage" refers to magnetic and optical media (e.g. disk,
tapes, hard drives, CD-ROM, etc.), but specifically excludes all types of random access memory (RAM), read
only memory (ROM), or any other forms of electronic memory.

Selection Guidance

Project Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for storage constrained systems.
• Useful during development and sustaining

engineering phases.

Process Integration
• Measure and monitor different types of storage (e.g.

disk, tape) separately. Specify the size of a word
(e.g. 16 bits, 32 bits, etc.) for each storage type.

• Actuals are easy to measure. Estimates are often
based on product size.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Storage
• Storage Available
• Storage Used
• Specified Storage Utilization Limit

Typical Attributes
• Version

Typical Aggregation Structure
• Component

Typically Collected for Each
• Hardware CI - Storage Unit

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient storage resources been provided?
• Do storage estimates appear adequate?
• What is the expansion capacity?

Measurement Selection and Specification Tables

Page 195

Measure - Response Time
Measurement Category - Target Computer Resource Utilization
Issue - Technical Adequacy

The Response Time measure reports the amount of time required to process a request. The measure counts
the time between initiation of a request for service and the conclusion of that service. It provides an indication
that the target computer system responds in a timely manner. User interface response time is often considered
an important quality factor.

Selection Guidance

Project Application
• Applicable to all domains. Used extensively on AIS

systems.
• Critical for projects with specified response time

requirements. Especially critical for real-time
projects.

• Useful during development and sustaining
engineering phases.

Process Integration
• Actuals can be based on real-time observation or

may require a tool that measures request completion
based on a defined operational profile. This data is
generally easy to collect.

• The operational profile has a significant impact on
this measure. Tests should include both normal and
stress levels of operation. The operational profile for
each test should be provided with the data.

• This measure must be collected at a low level in
order to provide a good characterization of the level
of service provided.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Service Initiation Time
• Service Completion Time
• Maximum Allowable Service Time

Typical Attributes
• Version
• Operational Profile

Typical Aggregation Structure
• Function

Typically Collected for Each
• Function - Service

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Is the target computer system sufficient to meet response requirements?
• How long do certain services take?
• Does the software operate efficiently?

Part 3 - Measurement Selection and Specification Tables

Page 196

Measurement Category – Technical Performance
Issue - Technical Adequacy

Technical Performance measures evaluate the degree to which the software achieves the technical and
functional requirements that are established for the system. These measures can include any functional
characteristics that can be quantitatively defined and demonstrated during the software or system operation.
Technical Performance measures are usually defined in term of the accuracy of software or system functions to
meet defined requirements; such as the number of concurrent functions required, data handling capability, or
signal processing speed. These measures provide an indication of the overall ability of a software-intensive
system to meet the users’ functional requirements.

Project Application
• Measurement category applicable to many projects.
• Applicable to all software process models.
• Useful during development, integration and test, and sustaining engineering phases.

Measures Included in this Category
§ Achieved accuracy in software technical and performance requirements, such the number of concurrent

tasks that can be performed, data handling capability, or the achieved speed of signal processing.

Limitations
• This measure often may not be available until the software has completed integration testing and can be

operated in the target hardware.

Related Measurement Categories
• Defects
• Environment Availability
• Target Computer Resource Utilization
• Complexity

Example Indicator(s)
• Response Time (PSM Part 5, Section 3.7)
• Response Time (PSM Part 5, Section 4.9)

Measurement Selection and Specification Tables

Page 197

Measure – Achieved Accuracy in Software Performance
Measurement Category – Technical Performance
Issue - Technical Adequacy

The measure of Achieved Accuracy in Software Performance is usually a combination of several other
measures that are defined by the software functional and technical requirements. These measures can include
any functional characteristics that can be quantitatively defined and demonstrated during the software or
system operation. Technical Performance measures are usually defined in term of the accuracy of the
functions of the software or system to meet defined requirements, such as response time, data handling
capability, or signal processing. These measures provide an indication of the overall ability of a software-
intensive system to meet the users’ functional requirements.

Selection Guidance

Project Application
• Applicable to all domains.
• Included in all government and commercial

projects that define specific requirements that
must be achieved in software products.

• Used for projects of all sizes.
• Often used for projects integrating COTS

software.
• Useful during development and sustaining

engineering phases.

Process Integration
• Sometimes difficult to generate accurate

estimates early in the project, especially for
new technologies and new projects.

• Data may not be available until late in a
project, when system functional testing is
performed.

• Resource and technology limitations may
prohibit demonstration and measurement of
all technical performance parameters.

• Data is usually available from functional test
records.

• Modeling and simulation results may be used
to estimate software functional performance
levels.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Software functional performance level

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or COTS)

Typical Aggregation Structure
• Component

Typically Collected for Each
• CI or equivalent

Count Actuals Based On
• Passing functional test

This Measure Answers Questions Such As
• How accurate was the signal processing function in this software release?
• Is the system able to read all the required data files in the available time?
• Was the software able to perform all required functions to meet the required system response time?

Part 3 - Measurement Selection and Specification Tables

Page 198

Measurement Category - Technology Impacts
Issue - Technical Adequacy

Technology Impacts measures quantify the positive or negative impacts of new technology used on the project.
They are defined and selected to track the effect of highly leveraged software technologies. They can include
functionality delivered, the amount of code developed, the defect discovery rates, and required replans.
Technology Impact measures provide an indication of the relative effects of developing or maintaining software
in different environments.

Project Application
• Measurement category applicable to many projects.
• Applicable to all software process models.
• Useful during project planning, development, and sustaining engineering phases.

Measures Included in this Category
• NDI Utilization

Limitations
• It is very difficult to attribute problem impacts to one particular software technology. Measures in this

category, however, do provide usable insight.

Related Measurement Categories
• Productivity
• Defects
• Product Size and Stability
• Functional Size and Stability
• Milestone Performance

Example Indicator(s)
• Software Origin (PSM Part 5, Section 3.9)
• Software Origin (PSM Part 5, Section 4.17
• Response Time (PSM Part 5, Section 3.7)
• Response Time (PSM Part 5, Section 4.9)
• Software Reliability (PSM Part 5, 4.20 and 4.21)

Measurement Selection and Specification Tables

Page 199

Measure - NDI Utilization
Measurement Category - Technology Impacts
Issue - Technical Adequacy

The NDI Utilization measure tracks the amount of code that is planned for reuse against what is actually
reused. If less code is reused than planned, additional schedule and effort will most likely be required to
complete the development.

Selection Guidance

Project Application
• Applicable to all domains. Commonly used in

weapons applications.
• Included in most DoD measurement policies

and some commercial measurement
practices.

• Used for projects of all sizes. Less important
for projects where little code is generated such
as those using automatic code generation and
visual programming environments.

• Most effective for traditional high order
languages such as Ada, FORTRAN, and
COBOL. Not generally used for fourth-
generation languages such as Natural and
ECOS.

• Not usually tracked for COTS software unless
changes are made to the source code.

• Useful during project planning, development,
and sustaining engineering phases.

Process Integration
• Define Lines of Code for each language.

Lines of code from different languages are not
equivalent.

• Sometimes difficult to generate accurate
estimates early in the project, especially for
new types of projects.

• Estimates should be updated on a regular
basis.

• Can be difficult estimating and tracking lines
of code by source (new, modified, deleted,
reused, NDI, GOTS, or COTS).

• Actuals can easily be counted using
automated tools.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Typical Data Items
• Number of Lines of Code (LOC)

Typical Attributes
• Version
• Source (new, reused, NDI, GOTS, or COTS)
• Type (added, deleted, modified)
• Language

Typical Aggregation Structure
• Component

Typically Collected for Each
• Unit or equivalent

Alternatives to Lines of Code Include
• Components
• Function Points
• Requirements

LOC Definition May Include
• Logical Lines
• Physical Lines
• Comments
• Executables
• Data Declarations
• Compiler Directives

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How accurate was the reuse size estimate on which the schedule and effort plans were based?
• How much has the reuse software size changed? In what components have changes occurred?
• Has the reuse size allocated to each incremental build changed?

Part 3 - Measurement Selection and Specification Tables

Page 200

Measurement Selection and Specification Tables

Page 201

GENERAL MEASUREMENT

SPECIFICATION TABLE

Part 3 - Measurement Selection and Specification Tables

Page 202

General Measurement Specification Table

This table provides measurement specification guidance applicable to all measures, and augments the
specification guidance found in the individual Measurement Description Tables. It provides information
that helps to define overall data and implementation requirements for all selected measures.

Specification Guidance

• Data Items - Quantitative data elements for each measure and the levels of collection and reporting
for each should be identified.

• Data Types - Measurement data representing plans, changes to plans, and actuals for each measure

should be collected and reported. Plans and estimates should be updated on a regular basis.

• Measurement Definitions - The developer should identify the actual measurement definitions and

methodologies that will be used for each specified measure. If these change over the course of the
project, the definitions and associated interpretations should be updated and provided to the project
office. Differences in the estimation methodologies and the way the actuals are counted for each
individual measure should be identified. The “exit” criteria for counting actuals should be defined for
each measure.

• Data Dates - For each measure, both the date that the measurement data was collected and the date

that it is reported should be identified. The data should be provided in a timely manner. The
difference between the date the data was collected and the date the data was provided to the project
office should be minimized.

• Collection Periodicity - Measurement data should be collected on a periodic, not event driven basis.

This is generally monthly on most projects but can be adjusted as necessary. The periodicity may
have to be modified for selected measures due to software process constraints.

• Measurement Organization - If more than one organization is involved in developing the software for

a project, measurement data should be collected from each and identified by source. Different
definitions for the same measures should be identified.

• Project Phase - The measures which are selected and integrated into the project should generally be

applied to all life cycle phases, including project planning, development, and sustaining engineering.
Throughout all phases measurement plans and estimates should be continuously updated and
reported.

• Data Reporting Mechanisms - The reporting mechanisms for delivering data to the project office

from the developer should be identified for each measure. Every effort should be given to establishing
the interfaces required to electronically transfer the data on a periodic basis.

PSMPSMPSMPSM
APPLYING SOFTWARE

MEASURES

PART 4

Part 4 - Applying Software Measures

Page 204

Part 4 - Applying Software Measures

Page 205

APPLYING SOFTWARE MEASURES

Part 2 of this Guide described how select the measures that best address the software
issues of a particular project. This part of the Guide explains how to apply
measurement to gain insight into the project issues. Measurement is only useful
when it provides information that helps to make objective and informed decisions
about the project issues.

This part of the Guide builds on the summary of the application process presented in
Chapter 4 of Part 1. It provides detailed guidance on the generation and use of
measurement indicators and addresses three types of analysis: software estimation,
feasibility analysis, and performance analysis. Part 5 of the Guide provides
measurement indicator examples for each analysis type.

This part of the Guide is organized into eight chapters:

� Chapter 1, Measurement Application Overview - describes the process for
collecting, analyzing, and reporting measurement data and information.

� Chapter 2, Collect and Process Data - describes how measurement data is
accessed and verified prior to analysis.

� Chapter 3, Analyze Issues - explains the three types of measurement analysis:
estimation, feasibility analysis, and performance analysis.

� Chapter 4, Make Decisions - explains how the analysis results are used to
address project issues.

� Chapter 5, General Analysis Concepts - presents a structured issue-analysis
model, and explains how to use measurement indicators to support issue
analysis.

� Chapter 6, Estimation - describes how to apply measurement to estimate
software size, effort, schedule, quality, and other factors.

� Chapter 7, Feasibility Analysis - describes how to apply measurement to verify
that software development plans are realistic and achievable.

� Chapter 8, Performance Analysis - describes how to apply measurement to
assess whether or not software processes and products are meeting established
plans.

Part 4 - Applying Software Measures

Page 206

Part 4 - Applying Software Measures

Page 207

TABLE OF CONTENTS

CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW209

CHAPTER 2 - COLLECT AND PROCESS DATA ..211

2.1 Access Data..212

2.1.1 Access Mechanisms..213

2.1.2 Data Collection Frequency ..214

2.2 Verify Data ..215

2.3 Normalize Data ...217

CHAPTER 3 - ANALYZE ISSUES ..219

3.1 Detailed Analysis Guidance ..220

CHAPTER 4 - MAKE DECISIONS ...223

4.1 Report Results..224

4.2 Select Alternative ...225

4.3 Take Action..226

CHAPTER 5 - GENERAL ANALYSIS CONCEPTS229

5.1 Measurement Indicator Defined..229

5.1.1 Basic Indicator Concepts ..229

5.1.2 Indicators as Estimators ...230

5.2 Using Indicators During the Analysis Process......................................231

5.2.1 Structured Analysis Model ...232

5.2.2 Structured Analysis Model Example ..234

5.3 Indicator Generation ..237

CHAPTER 6 - ESTIMATION ...243

6.1 Using the Analysis Model..244

6.2 Estimators...245

6.3 Estimation Process Overview ...247

6.4 Identify the Approach ..248

Part 4 - Applying Software Measures

Page 208

6.4.1 Types of Estimation Approaches..248

6.4.2 Selecting an Estimation Approach ...250

6.5 Map and Calibrate.. 254

6.6 Perform Estimate... 255

6.6.1 Size Estimation..255

6.6.2 Effort Estimation..257

6.6.3 Schedule Estimation..258

6.6.4 Quality Estimation ...259

6.7 Evaluate Estimates.. 260

CHAPTER 7 - FEASIBILITY ANALYSIS .. 263

7.1 Using the Analysis Model ... 264

7.2 Indicator Baselines.. 266

7.2.1 Trend-Type Baselines..266

7.2.2 Limit-Type Baselines ...268

7.3 Feasibility Analysis Process Overview.. 270

7.3.1 Evaluate Plans ..270

7.3.2 Assess Impact ...272

7.3.3 Identify Alternatives ...272

CHAPTER 8 - PERFORMANCE ANALYSIS ... 273

8.1 Using the Analysis Model ... 273

8.2 Performance Indicators... 275

8.2.1 Trend-Based Indicators..275

8.2.2 Limit-Based Indicators ...276

8.3 Performance Analysis Process Overview ... 277

8.4 Compare Plan versus Actual .. 277

8.5 Assess Impact ... 281

8.6 Predict Outcome.. 282

8.7 Evaluate Alternatives .. 282

Part 4 - Applying Software Measures

Page 209

CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW

The PSM issue-driven measurement process is based on tailoring and applying
software measures within the project context. The tailoring process was described
earlier in the Guide. This chapter provides an overview of the overall process for
applying and using measurement throughout the project life cycle. The measurement
application process converts raw measurement data into actionable information that
relates directly to the project issues. Figure 4.1-1 shows the major activities by which
the specified measurement data is collected, processed, and analyzed to provide the
feedback needed for effective decision-making.

Data

Project Context
Information

Measurement
Plan

Actions

Information

Questions

Risk Management and
Financial Performance Results

New Issues

Periodic
Assessment

Collect and
Process Data

Analyze
Issues

Make
Decisions

Figure 4.1-1. Measurement Application Process

The measurement plan, which was created as a result off the tailoring process,
identifies the project issues and specifies the measurement data to be collected. In the
first activity of the application process, raw measurement data is collected and made
ready for analysis. Analysis of project issues is based on both measurement and
project-context information. This activity results in a quantification of the status of
the project relative to the known issues, and helps to identify new issues. Information
from the analysis activity coupled with risk and financial management results help
project managers make decisions and take corrective action with respect to project
issues. These measurement activities are repeated throughout the project life cycle on
a periodic basis.

The PSM measurement application process described in this chapter is both flexible
and repeatable. The process is flexible to allow different types of measurement data
to be analyzed, interpreted and used, and different types of analyses to be performed,
at different times in the life cycle. The process is repeatable because each task is well-
defined, and appropriate supporting mechanisms are provided. This means that

Part 4 - Applying Software Measures

Page 210

different analysts working with the same data are likely to reach similar results.
Moreover, the analysis process captures how each specific conclusion was reached.

The following chapters describe each of the activities that comprise the measurement
application process.

Part 4 - Applying Software Measures

Page 211

CHAPTER 2 - COLLECT AND PROCESS DATA

Collecting and understanding the data is the first task in analyzing project issues.
Getting good data is the foundation of any measurement process. Almost all data
originates with the software developer, including planned, actual, and historical data.
Some of the concerns associated with data collection are the sources of data, reporting
frequency, format, normalization and aggregation, conventions, and data verification.

The collected data should closely reflect the nature of the software product or the
developer's process. Be sure to include all contractors and subcontractors in the data
collection effort. More mature developers are likely to be able to provide more types
of data at greater levels of detail than less mature developers.

Figure 4.2-1 shows the three key tasks involved in collecting and analyzing data.

Models &
Historical Data

Data
Project
Context

Measurement
Plan

Access
Data

Verify Data

Normalize
Data

Figure 4.2-1. Collect and Process Data

“Raw measurement data” is generated by implementing project activities and
delivering products throughout the project life cycle. For instance, when a unit of code
is produced, measurement data is inherent in the characteristics of the software
component. This product data may include the number of lines of code, number of
interfaces, and complexity. Measurement data is also inherent in the characteristics of
the coding activity. The activity data may report the amount of time and effort it took
to develop or test the component. Raw data, the primitive quantitative values that
have not been processed by the developer, must be collected and made accessible.
Once data is available, it needs to be verified. Verified data may then need to be
normalized before it can be used for analysis purposes.

The following sections discuss each of these tasks in detail.

Part 4 - Applying Software Measures

Page 212

2.1 Access Data

Data definitions developed during the measurement tailoring process and documented
in the measurement plan define the detailed specifications for each data item to be
collected. They describe what raw data needs to be accessed, when it is available,
what format it will be in, what software tool or other source it will come from, and so
on. Data definitions are used to confirm that the data accessed matches the data
specified in the measurement plan.

Most data comes from the developer’s process. Some data, however, may come from
the acquirer’s organization. Data for software-intensive projects is likely to come
from the following sources:

� Software development plan - This plan typically contains the budgets and
schedules against which progress and expenditures will be compared. Data must
be collected from both initial plans and later replans (including incremental
changes to plans). As the project evolves, the corresponding actual data on
problems, progress, size, and effort will become available. Use of a project
management tool facilitates data collection.

� Configuration management systems - These systems may contain counts of
software units, lines of code, and possibly problem or defect data.

� Financial systems - Accounting and financial systems may by able to supply
effort hours and costs expended by personnel and at the activity level.

� Spreadsheets - Progress data usually comes from the detailed work plans
maintained by project technical managers and team leaders.

� Code analysis tools - Counts of software units, lines of code, code complexity and
changes to software and documents usually can be obtained from these tools.

� Technical project tools (CASE Tools) - These systems may include requirements
data from requirements analysis tools and test progress data from testing tools.

� Project documentation - Requirements specifications, design specifications, and
test procedures may provide data on requirements, design, test progress, and
requirements traceability and stability.

While each of these data sources will require a different access approach, two issues
are common establishing any data access mechanism:

� Determining how data is collected, stored, and made available for analysis.

� Determining when and how often data should be accessed.

Part 4 - Applying Software Measures

Page 213

2.1.1 Access Mechanisms

The developer should make low-level data available to acquisition organization.
Figure 4.2-2 illustrates how this access may occur. While various electronic access
mechanisms exist, primary mechanisms include:

� Direct, shared access - The acquirer’s project office personnel have access to the
developer’s actual data sources or a project-level measurement repository.

� Copies of files and/or databases - The developer regularly makes copies of files
or databases in their native format and provides them to the acquirer’s project
office. This approach requires that the project office have software tools to be
able to read and interpret those files.

� Data Exports - Each reporting period, the developer exports data from each data
source into a standard format, such as ASCII-delimited. The acquirer’s project
office staff may then import the data into whatever file system or measurement
tool is available.

� Hardcopy - Each reporting period, the developer provides printed output showing
the measurement data generated that period. The acquirer’s project office staff
must then enter the data or perform the analysis manually.

Data Delivery

Access
Mechanisms

Exported
Data

Copies

Paper
Format

Direct/
Shared
Access*

Development Team

Data Receipt

Acquirer Project Staff

Figure 4.2-2. Common Data Access Mechanisms

Part 4 - Applying Software Measures

Page 214

The preferred access mechanism is direct access to the developers measurement data
repository or individual data sources. This “shared data” approach has a number of
benefits. Direct access provides the acquirer with timely access to the data and
ensures that the acquirer has exactly the same data that the developer is using to make
decisions. Additionally, direct access ensures that the acquirer has the level of data
necessary to identify and analyze problems independent of the developer. This
approach also reduces the cost and impact on the developer. This strategy is well
suited for implementation in an Integrated Product Team environment. In a direct
access transfer scheme, project office personnel may be granted read-only privileges,
and sensitive data can be protected with password and authorization techniques.

Other electronic mechanisms, such as exported files, require that the acquisition office
address some data integrity issues before data can be received. One consideration is
whether the data sent by the developer is a replacement of prior data, or an addition of
new data. These distinctions will influence how data is accessed, processed, and
stored for analysis.

For example, work unit progress data may be collected and tracked by a task leader
using a spreadsheet. Columns in the spreadsheet may include unit name, planned start
date and end dates, actual start and end dates, and planned and actual effort expended.
Each row represents a different software component. If this data is exported and
submitted to the acquirer in its “native” form, it is likely that the acquirer will want to
replace the prior period’s version with the latest version of the data. However, it will
be important to verify that static data such as the component list and planned dates
have not shifted between periods before the new data is used for analysis. If the data
is “pre-processed” by the developer, a single count of actual components completed
each period, or a record for each component actually completed may be delivered. In
this case, the acquirer’s staff may want to append this data to data from prior periods,
forming a complete picture of progress to date.

2.1.2 Data Collection Frequency

When a shared data strategy is not employed, the lag time between data delivery and
data receipt must be factored into the analyst’s schedule. The lag between data
collection and reporting should be kept to a minimum.

In all cases, data may be collected by the developer more frequently than it is analyzed
by either the developer or the acquirer. The most common reporting intervals are
monthly for requirements analysis, design, and implementation, and weekly for
integration and test activities. However, on small projects with short cycle times, or
for projects using a rapid incremental development approach, weekly reporting of data
may be necessary. In addition, as a project approaches key milestone decisions, more
frequent data collection may be needed. Data that is reported less frequently is stale,

Part 4 - Applying Software Measures

Page 215

and often the opportunity for action has passed when it is received. Generally,
analysis should occur as soon as possible after the measurement data becomes
available.

2.2 Verify Data

Getting useful measurement results depends on feeding good data into the analysis
process. Data verification must consider both the accuracy of the data as it is
recorded, and the fidelity with which it is transmitted. All data should be identified
with its date of collection and source. Such identification helps to align data with
project events, and allows data from different sources to be correlated. Configuration
management of data delivery versions and dates should be implemented for electronic
deliveries of data sets. This audit trail should be checked periodically to assess the
integrity of the data collection process.

Developing and disseminating clear definitions of the desired data items helps to
ensure consistent data. Even seemingly obvious terms need to be defined, such as lines
of code and staff-months of effort. For example, lines of code may be interpreted to
mean all physical lines, only non-comment lines, executable statements, or one of a
dozen of other variations. Even staff-months can be ambiguous. The average number
of hours worked per month varies from organization to organization. The categories
of labor that relate to “software” may also differ.

Data verification is complicated by the fact that some of the assumptions underlying
the measurement process can change during the project. Aggregation structures,
product components, software processes, and even measurement definitions may be
updated or revised as the project evolves. Sometimes, estimates and actuals are
measured differently. Definitions, assumptions, and aggregation rules must be clearly
documented and understood.

Figure 4.2-3 contains examples of typical data verification questions that should be
considered.

Part 4 - Applying Software Measures

Page 216

Data Verification Checklist

1 Data Currency :
� Does the data relate to the project activities currently underway?
� Does the data received match the schedule?

2 Data Aggregation Structures and Attributes :
� Are values in the fields that will be used to aggregate data records

consistent across records? For example, defect classifications,
software component identifiers (CIs, units), project activities, work unit
packages, and cost accounts.

� Are values in the fields that will be used to aggregate data records
consistent across project teams or organizations?

3 Units of Measure:
� Are the same units of measure being used across all project teams or

organizations? For example, hours versus days and lines of code
versus KSLOC.

4 Data Item Contents:
� Are any data item values outside the acceptable ranges?
� Is the format of any data item’s values incorrect? (Data type and

decimal positions.)

5 Data Completeness:
� Is measurement data needed for each issue provided?
� Are data items missing within measurement data?
� Is project-context data delivered?
� Is this the data agreed upon to collect?

6 Changes to Existing Data:
� Have plan values that were not expected to change been changed?

For example, planned start and end dates, planned cost/staffing/effort,
and planned components completed/tested.

� Do changes to plan values represent a replan?
� Have any actual values that were not expected to change been

changed? For example, actual start and end dates for activities
already completed, and actual costs/staffing/effort for prior periods.

7 Does the d ata look too regular?

Figure 4.2-3. Typical Data Verification Questions

Recognize that even accurate and verified software engineering data is likely to be
“noisy.” Software engineering is a human-intensive activity; things seldom go exactly

Part 4 - Applying Software Measures

Page 217

as planned. Because performance varies from week to week, the analyst should be
wary of “actual” data that exactly matches the “plan.”

Any concerns about or inconsistencies in the data should be resolved via
communication with the developer. Missing data, large changes in values, or changes
in the data structure should always be discussed with the developer to ensure that the
acquirer’s staff understands what the data represents.

2.3 Normalize Data

Before some data can be analyzed, it may need to be normalized. Normalization is
the process of converting raw data into a different unit of measure so it can be
compared or combined with other data. Examples are:

� Converting one team’s effort from hours to months so that is can be compared and
combined with another team’s effort data which was reported in months.

� Converting a subcontractor’s set of software development activities to the prime
contractor’s slightly different set of activities to allow combination and analysis of
effort by activity.

� Converting lines of code for units written in different languages, such as Fortran
and Cobol, into a measure of “Ada equivalent” lines of code. This will allow
product size measures to be combined and analyzed to monitor productivity, code
and growth.

Some normalization involves aggregating data according to a simple rule. In the first
example above, a fixed number of hours are determined to always be equivalent to one
month. It is also often necessary to combine raw data from low-level aggregation
structures into higher levels. Aggregating data requires the definition of the
relationships among the measured objects using a component, functional, or activity
based structure.

Other types of normalization requires a more extensive set of conversion rules or
models. For example, creating an “Ada Equivalent” measure of lines of code for
Fortran and Cobol requires the use of a model that accounts for the effect of language
limitations and coding constructs. Normalization has to be performed carefully. Any
rules or models must be validated with historical data and documented.

For effective communication to occur, both the developer and the project acquisition
office must understand and use the same aggregation and normalization rules.

Part 4 - Applying Software Measures

Page 218

Part 4 - Applying Software Measures

Page 219

CHAPTER 3 - ANALYZE ISSUES

Analysis is one of the most important measurement application activities. During
analysis, previously collected data is converted into information that is used by the
project and technical managers to help make decisions. The transformation of data to
information occurs through a systematic analysis process. Analysis is integral to the
application process and is repeated throughout the project life.

The focus of the analysis process changes with the status of the project. Figure 4.3-1
shows three types of analyses. Early in the project cycle, the focus is on software
estimation to support project planning. As plans near completion, the focus shifts to
feasibility analysis. Once the project has begun, performance analysis becomes the
major concern. During the project, there will often be occasion to re-estimate and to
re-examine the feasibility of plans. The specific analysis techniques employed in an
given analysis cycle depends on the data available and the information needs of the
project. As shown in Figure 4.3-1, each analysis type has its own required inputs and
produces different types of results.

Actual
Performance Data

Assumptions

Problems

Estimate

Plan Data

Risks

Plans

Project Data
Historical Data

Information

Data

Project
Characteristics

Objectives
Constraints

Lack of
Information

Estimation

Feasibility
Analysis

Performance
Analysis

Figure 4.3-1. Three Types of Issue Analysis

During each analysis cycle, three types of analyses may be required as shown in
Figure 4.3-1. They are:

� Estimation is conducted to establish target values for software size, effort, and
schedule to support project planning. Estimation usually starts with historical data
and a set of assumptions about the project’s process and products. Estimation not

Part 4 - Applying Software Measures

Page 220

only produces estimates, but also identifies uncertainties that feed back into the
issue identification activity. Estimation should be conducted during the initial
planning phase and during all subsequent replans.

� Feasibility Analysis is conducted to determine whether project plans and targets
are technically realistic and achievable. Feasibility analysis uses historical data,
experience, and consistency checks to evaluate the project plans. Any risk
identified during this analysis should be entered into the project’s risk management
process. Feasibility analysis should be conducted during the initial planning phase
and during all subsequent replans.

� Performance Analysis is conducted to determine whether software development
efforts are meeting defined plans, assumptions, and targets. Plan and actual
performance data are the inputs to this process. The performance analysis process
is designed to identify risks, problems, and corrective actions that can be taken.
Performance analysis should be conducted periodically once a project has
committed to a plan.

The measurement application process is designed to be investigative. Each problem
may require the application of a different set of analysis techniques in order to isolate,
understand, and correct the problem. As project problems, risks, and information
change, the types of analyses performed and the indicators generated must be revised.

3.1 Detailed Analysis Guidance

Analysis of measurement data tends to be a highly individualistic activity. However,
the credibility and completeness of the analysis are enhanced when the analysis
follows a repeatable process. This process provides results that will more likely be
useful to the project manager in making critical decisions.

Chapters 5, 6, 7, and 8 in this part of the Guide provide more detailed analysis
guidance:

� Chapter 5 - Basic Analysis Concepts - This chapter outlines the generation and
use of measurement indicators and describes the structured issue analysis model
introduced in Part 1 in more detail.

� Chapter 6 - Estimation - This chapter provides a detailed description of
software estimation. It addresses the overall estimation process and specific
estimation techniques.

� Chapter 7 - Feasibility Analysis - This chapter explains how to evaluate
software project plans for technical accuracy and realism.

Part 4 - Applying Software Measures

Page 221

� Chapter 8 - Performance Analysis - This chapter explains how to compare
actual software performance against established plans.

Chapters 6, 7, and 8 present a repeatable issue analysis process tailored to the
respective type of analysis addressed. In each of these chapters, guidance is provided
on:

� How to use the structured analysis process model to guide the analysis tasks.

� The types of measurement indicators that should be used to present the related
measurement information.

� Steps to follow to ensure a complete and credible analysis.

Part 4 - Applying Software Measures

Page 222

Part 4 - Applying Software Measures

Page 223

CHAPTER 4 - MAKE DECISIONS

The purpose of measurement is to help project managers make better decisions. The
final activity in the PSM measurement application process encompasses three major
tasks: 1) reporting measurement information to the decision maker, 2) selecting from
alternative courses of action, and 3) implementing corrective actions based on the
available information. Figure 4.4-1 shows the tasks that should be taken to use the
information that measurement provides.

Baseline
Budget

Actions

Information

Risk Management Plan

Concurrent
Activities

Report
Results

Select
Alternative

Take
Action

Financial
Performance

Reporting
Monitor Risk Control Risk

Figure 4.4-1. Make Decisions Process

Information from the analysis process is input to the decision-making activity. This
analysis information includes a “status report” for the project with respect to the set of
project issues currently being monitored, as well as any new risks or problems that
may have been derived from analysis. Alternatives for dealing with identified problem
areas are also provided with the analysis results.

Analysis results also provide important inputs to the project risk and financial
management processes. Newly identified risks should be fed into the risk management
process so that they can be formally recorded, tracked, and monitored. Measurement
data helps update the probability of occurrence and likely impact of a defined risk. If
the software measurement and financial performance management plans are
coordinated during the tailoring process, measurement data can also be used to
objectively assess the financial status of the project.

Part 4 - Applying Software Measures

Page 224

Once project status is understood, and problems and possible alternative courses of
action have been discussed, the optimum alternative should be selected. The goal of
the decision-making activity is to maximize the overall likelihood of project success.
Thus, the selection of an alternative should consider the effects of the proposed action
from the risk and financial performance perspectives, as well as the measurement
perspective. Finally, decisions are made and appropriate actions are taken to
implement those decisions. Occasionally, the information available may be
insufficient to select a course of action. In this case, adjustments to the measurement
process may be needed to collect the necessary data.

The three tasks required to make decisions are discussed in more detail in the
following sections.

4.1 Report Results

The analysis results must be regularly communicated to the decision maker. This
communication is normally done via a briefing or report and should include the
following:

� Overall evaluation of the project - Status relative to the known project issues
and projections of performance through completion.

� Identification of specific problems, risks, and lack of information - Location,
cause, and impact of any current or potential obstacles to project success. Also,
any outliers or trends worth noting.

� Recommendations - Alternative actions to address the underlying problems
identified in the analysis, with the advantages and disadvantages of each.

� Potential new issues - The nature of the problem or proposed actions may result
in the identification of new issues that may affect the focus of the measurement
process.

Reporting and reviewing measurement results must be integrated into the day-to-day
project management and technical processes. The results should be a primary input to
project IPTs, and should be reviewed with respect to project events, risk management
results, and project financial performance. The measurement analysis results should
also be an input to periodic project status and milestone reviews.

If possible, measurement results should be initially reviewed by the project software
team or IPT. This interaction provides an opportunity to discover events and
qualitative information that help to explain the data. It is easy to arrive at incorrect

Part 4 - Applying Software Measures

Page 225

conclusions without such communication. Measurement should be used for
communication and understanding, not for assigning blame.

The decision maker needs to know how the analysis results and recommendations were
derived. All assumptions should be well defined. This is required to justify decisions
and trace recommendations back to the underlying data. Risk management and
financial performance information should also be examined to fully assess project
status and support recommendations.

The analysis results should be used to update the project’s risk management plan.
Measurement of actual status and performance levels helps to re-assess the probability
of occurrence and magnitude of risks. Quantitative progress measures also provide a
solid basis for reporting and explaining financial performance, and can provide an
objective input to Earned Value or activity-based costing systems. All of the analysis
information should be presented together to the decision maker as a basis for
evaluating alternatives and taking action.

4.2 Select Alternative

Alternative courses of action should have been identified for all known problems
during the analysis process. The pro’s and con’s of each problem should have been
defined. Measurement helps predict likely project outcomes given different scenarios
and actions. Current quantitative trends can be projected into the future. Historical
data and qualitative experience from similar projects can also be helpful in evaluating
alternatives. Consider the effect of each alternative on the risk and financial status of
the project, as well as the projected impact on current problems.

One potential course of action is to do nothing. In most cases, a more proactive stance
will be necessary. Look for alternatives that address the underlying cause of the
problem, not just the “critical” symptom. For example, if a project is running over its
budget, do not try to fix the situation by adding money to the budget. Try to
understand the cause of the problem. Is productivity less than expected? Are the
requirements expanding? If so, address these issues.

The impact of each proposed course of action on the project’s risk status should be
assessed. An action that addresses a current problem could increase the risk exposure
of the project in other ways. For example, purchasing a software productivity aid,
such as a design tool, might lower costs in the future. However, the risk of delays in
acquiring, installing, and learning the tool might make this course of action
undesirable. Focusing strictly on the known problems can create a situation that
cannot be corrected if a significant risk event occurs.

Part 4 - Applying Software Measures

Page 226

The viability of each proposed course of action should also be examined with respect
to financial performance information. The availability of budget and schedule may
affect the project’s ability to implement the proposed course of action.

All of this information is required to help the project manager arrive at the optimum
decision within the bounds of project constraints.

4.3 Take Action

The use of software measurement on a project does not require any special or
additional management control functions. It does, however, require that basic project
management structures be in place. Measurement complements the existing planning
and control activities, especially risk management and financial performance
management. When management action is deemed appropriate, based on measurement
and other project information, it should be implemented via the existing management
structure and contractual mechanisms.

Measurement helps to recognize that a problem exists and to localize its cause. The
identification of a problem’s cause and selection of appropriate corrective action
requires the application of good management and engineering judgment. Action must
be taken to realize any benefit from measurement.

Sometimes the developer will recognize the problem and take action independently.
However, some actions can only be taken by the acquirer. Examples of actions that
can only be taken by the project manager include the following:

� Extending the project schedule to maintain quality.

� Adding development resources to stay on schedule.

� Deleting functional capabilities to control costs.

� Changing the development approach or acquisition process to improve
performance.

� Reallocating project resources and budgets to support key activities.

Some of the actions listed above affect project baselines and may not be taken
unilaterally. Other actions attempt to optimize performance within the project’s
established constraints. Measurement, risk, and financial performance information
help the project manager to recognize and select the “best” available course of action.

Once a corrective action is initiated, additional measurement indicators may be defined
to assess the effectiveness of the action. Normally, there is a delay between the start

Part 4 - Applying Software Measures

Page 227

of a corrective action and the detection of its effects. Nevertheless, it is important to
follow through to ensure that the desired outcome is realized. In most cases, new
indicators to track actions can be defined using the data already collected.

Part 4 - Applying Software Measures

Page 228

Part 4 - Applying Software Measures

Page 229

CHAPTER 5 - GENERAL ANALYSIS CONCEPTS

Issues usually cannot be measured directly. Measurement indicators, therefore, are
used to present the measurement results so that the issues are more easily understood.
Indicators are the basic building blocks of measurement analysis. This chapter defines
what measurement indicators are and describes how to use them to address project
issues.

5.1 Measurement Indicator Defined

In PSM, an indicator is defined as a measure or combination of measures that
provides insight into a software issue or concept. Indicators are analysis tools that
provide insight into a particular issue. Indicators are often represented as a graph or a
table. Indicators report on known problems and give warnings of potential problems
associated with identified software issues. An important issue may be tracked with
several indicators and, in many cases, they are based on different measures.

The measurement approach defined in PSM stresses the collection of data at a
relatively low level of aggregation. From this data, many different indicators can be
constructed. This approach allows the analyst to combine measurement data in many
different ways, depending on what the project situation requires. It allows for greater
flexibility in analyzing issues and adapting to new issues as they arise. A
measurement process that is based only on the periodic delivery of pre-defined graphs
does not have this flexibility.

5.1.1 Basic Indicator Concepts

The PSM concept of indicators provides a systematic method for examining
measurement data. In most cases, insight into an issue cannot be obtained by
collecting only “current” or actual performance data. Actual data must be compared
with some notion or expectation of what it should be. That expectation may or may
not be explicitly stated prior to the start of the measurement process. It may be a rule
of thumb such as, “error rates usually go down as testing progresses.” Criteria are
needed to decide whether or not the difference between actual data and expected data is
sufficient to cause concern. Thus, the basic measurement indicators used in PSM
generally consist of three parts:

� An actual value of a measure or combination of measures - Includes hours of
effort expended or lines of code produced to date.

Part 4 - Applying Software Measures

Page 230

� Expected value of a measure or combination of measures - A planned value,
quantitative objective, baseline, or historical value such as planned milestone
dates, target level of reliability, or required productivity.

� Significance criteria - Rules of thumb and statistical techniques used to assess the
difference (often called variance) between planned (expected) and actual
(measured) values.

Figure 4.5-1 provides an example of an indicator entitled design progress that contains
the three elements of an indicator as described above. The actual values show the
cumulative number of software units that have completed design to date. The expected
values are represented by the plan line, which show the amount of design that should
be accomplished at any time that spans the design phase for the project. The variance
is the gap between the actual and last plan values. The significance criteria might be
that a variance of more than 10% requires further analysis. For example, for
December 1997, 67% of the units expected to be complete according to the plan are
not complete.

Design Progress

0

50

100

150

200

250

300

350

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Plan
Actual

Project: PSM Data as of 31 Dec

Figure 4.5-1. Example of an Indicator

5.1.2 Indicators as Estimators

An estimator is a special type of measurement indicator that involves two different
measures rather than planned and actual values of one measure. In this case, values of
one measure are used to estimate or predict the values of the other measure. The
estimators used in PSM generally consist of three parts:

Part 4 - Applying Software Measures

Page 231

� Known or assumed value of a measure is sometimes referred to as the
independent variable.

� Estimated or predicted value of another measure is sometimes referred to as the
dependent variable.

� Uncertainty associated with the estimate is an indication of the degree of
confidence in the estimating relationship defined by this type of indicator.

Figure 4.5-2 shows an example of an estimator (Putnam, et al., 1992). In this
example, product size (along the horizontal axis) is used to estimate effort (along the
vertical axis). The trend line (solid diagonal) shows the relationship between size and
effort. As size increases, effort also increases. The figure also shows 95% confidence
limits around the trend line. Ninety-five percent of the time, actual effort should fall
within this range for any given size. This uncertainty comes from two sources: 1)
natural variability in the estimating relationship due to variations in the performance of
people and organizations, and 2) lack of information about the correct estimating
relationship to use. For example, the latter may result because data from similar past
projects is not available.

Size - Effort
Estimating Relationship

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

La
bo

r
H

ou
rs

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project under
consideration

Project: PSM Data as of 31 Mar 98

Figure 4.5-2. Example of an Estimator

5.2 Using Indicators During the Analysis Process

Indicators help provide insight into project issues. However, issues are not
independent of one another. In order to make those dependencies visible, PSM

Part 4 - Applying Software Measures

Page 232

provides a “structured analysis model” that defines the relationships between software
issues and associated indicators.

5.2.1 Structured Analysis Model

Figure 1.4-2 of Part 1 presented a high-level view of the structured analysis model,
based on the PSM common software issues. Figure 4.5-3 shows a further refinement
of the model, expanding the PSM common software issues into the respective PSM
measurement categories.

Note
The measurement category
Environment Availability is
not represented in this figure.

3

Product
Quality

Developer
Performance

Technical
Adequacy

Growth and Stability

Resources
and Cost

Schedule and
Progress

4 4 4

9

21

Process
Maturity

Productivity

Computer
Resources

Technical
Performance

Technology
Impact

Functional
Size

Product
Size

5

8

Personnel
Effort - Staff

Financial
Performance

7

6

Milestone
Performance

Work Unit
Progress

Incremental
Capacity

Rework Defects

Complexity

Figure 4.5-3. Model of Common Software Issue Relationships

The following numbered relationships correspond to the numbered circles in the figure:

1. Functional size represents the amount of functionality that the software system (or
software change) must provide. This is usually determined by the requirements.
Functional size is the primary determinant of product size, the amount of software
that must be developed or maintained.

Part 4 - Applying Software Measures

Page 233

2. Most innovative technical approaches attempt to reduce the amount of physical
software that must be implemented by programmers for a given function.
Examples of technical approaches include COTS, common architectures, and code
generators. If the technical adequacy of the approach is not sufficient to yield all
of the desired benefit, more software may have to be developed than planned.
Product size is also influenced by computer resource constraints and technical
performance requirements.

3. Increases in the product size usually result in the need for additional personnel.
Effort increases may also be influenced by other factors, such as shortfalls in
productivity or inconsistent development processes.

4. Developer performance affects the overall need for personnel resources, and
influences software schedules and product quality. A more capable developer
performs better, assuming that other factors are constant.

5. Adding more personnel to the original plan often leads to progress and schedule
shortfalls, because it is difficult to effectively add unplanned for staff to an
ongoing project. This also impacts the efficiency of the project. Schedule
shortfalls are generally associated with milestone slips, delays in completing
software activities and products as planned, and the downsizing of build and
release requirements.

6. Schedule shortfalls, due to increased effort or other problems, can cause product
quality problems related to an increase in the number of open defects in the
product. In order to meet schedule, documented testing efforts may be curtailed or
discovered problems may not be corrected. In general, higher software
complexities make this more difficult.

7. Latent software problems represent rework that requires additional effort to make
the current or future releases acceptable to the user. The project manager will
usually make a delivery decision based on the number of open problems, fixing
high-priority problems and deferring others to the maintenance phase.

8. Rework increases the effort required to complete the project as originally
specified. Often, projects are forced to modify or eliminate some of their mission
requirements in order to stay within their cost and schedule constraints.

9. For software projects, personnel effort (including rework) is the primary
determinant of software cost. Control of cost can only be achieved by controlling
the other upstream factors noted in the analysis model.

The structured analysis model helps to highlight problems in time to take effective
corrective action. Upstream issues can often be used to provide an early indication

Part 4 - Applying Software Measures

Page 234

that a problem is likely to occur in one of the downstream issues. This means that a
project for which schedule was identified as a high-priority issue might also benefit
from collecting effort and size measures as a potential “warning” of schedule
slippages. While schedule problems may not be apparent for some months, size
growth and/or effort overruns may be visible well before that.

Indicators provide the primary insight into the existence of problems or the severity of
the problems in each issue area. The measurement variances represented on the
indicators help to decide what areas need to be addressed.

A given indicator may be used in several different ways. It can provide insight into a
given issue, or it can be a pointer to problems that are likely to arise. An indicator
may be used in multiple analysis activities as indicators are combined and compared to
assess different issues.

5.2.2 Structured Analysis Model Example

The structured analysis model mitigates the software issues and measurement results
into a comprehensive view of the project. The model relates the software issues in a
series of cause and effect relationships. It shows how measurement indicators can be
used as “predictors,” or “leading indicators” of downstream problems, and how they
can be used to explain why certain events have occurred.

The following is an example of how the structured analysis model can be used. Figure
4.5-4 is an indicator that shows how the estimated size of a software system has grown
over time since the initial estimate.

Part 4 - Applying Software Measures

Page 235

Estimated Software Size Growth

0

10

20

30

40

50

60

70

80

90

100

Jan Apr Jul Oct

S
ou

rc
e

Li
ne

s
of

 C
od

e
(I

n
T

ho
us

an
ds

)
Initial Estimate
Re-estimate

Data as of 31 Mar 98Project: PSM

Initial Estimate

Re-estimate 1

Re-estimate 2

Re-estimate 3

Figure 4.5-4. The estimated size growth indicator shows that the initial
software size estimate was low.

Per the analysis model, the size growth is a leading indicator of the need for additional
development effort, with an expected impact on project cost and schedule.

Figure 4.5-5 is an effort indicator that shows the variance between planned and actual
effort. Although the applied effort is tracking close to plan, the size-growth leading
indicator (Figure 4.5-4), indicates that the planned effort will be insufficient. It is
likely that the planned effort in Figure 4.5-5 has not been revised to reflect the re-
estimate of size depicted in Figure 4.5-4. The amount of effort is probably the more
critical issue, given its downstream impact on cost and schedule.

Part 4 - Applying Software Measures

Page 236

Effort Allocation

0

200

400

600

800

1000

1200

1400

Jan Apr Jul Oct

S
ta

ff
H

ou
rs

 p
er

 M
on

th

Plan
Actual

Data as of 31 Mar 98Project: PSM

Figure 4.5-5. Effort allocation is a leading indicator that provides early
warning of the need for additional resources in the development effort.

The Figure 4.5-4 size growth indicator can also be used to help quantify the amount of
expected effort growth. Using the “estimator” depicted in Figure 4.5-6, the amount of
size growth from Figure 4.5-4 is used to define a new plan for total project effort.

Estimated Software Effort

0

10,000

20,000

0 50 100

Source Lines of Code (In Thousands)

S
ta

ff
H

ou
rs

Data as of 31 Mar 98Project: PSM

Initial Estimate

Re-estimate 3

Figure 4.5-6. Measurement data provides an objective basis for a new
plan of the development effort.

Part 4 - Applying Software Measures

Page 237

Both the use of the structured analysis model and the generation of indicators are
dynamic. The analysis model is applicable to the three analysis areas of estimation,
feasibility analysis, and performance analysis. Measurement indicators are usually not
pre-defined. They change with the analysis process to answer different, but related,
questions and to provide different views of the measurement results.

The next section provides some guidelines for drawing effective graphs of indicators.

5.3 Indicator Generation

The most important information that can be derived from measurement indicators and
estimators are the respective variances and estimating relationships. These are often
best communicated graphically rather than as a table of numbers. Graphs also make
trends in data, variances, and relationships more obvious and easier to interpret.

Many simple charting techniques can be used to produce graphical representations of
the measurement data. The ability to extract the pertinent information contained in the
measurement data can be improved with proper selection and use of these charting
techniques. The three most commonly used charting techniques are described below.

1. Line Charts, sometimes called run charts, provide a way to represent a series of
measurement data values over time. A series may contain either actual or
expected values, or both. Each value in the series is reported for a specified point
in time. Values are plotted as points on the graph, and the values are connected
with lines to help show progress or a trend. For example, a line chart may include
one series of planned values which shows the cumulative number of units
scheduled to complete coding and unit testing each month, over a six month period
of time. As units are actually completed, a second series of values is summed and
added to the graph each month to allow a comparison between measured and
expected values. Figure 4.5-7 provides an example of a line chart.

Part 4 - Applying Software Measures

Page 238

Implementation Progress

0

10

20

30

40

50

60

70

80

90

100

1 Jan 22 Jan 12 Feb 5 Mar 26 Mar

N
um

be
r

of
 C

om
po

ne
nt

s

Plan
Actual

Project: PSM Data as of 10 Mar 97

Figure 4.5-7. A line chart provides a visual comparison of planned
versus actual values.

2. Bar Charts provide a way to represent the count or frequency of a set of
components or events. Bars are typically drawn vertically with the Y-axis
indicating the units or events being counted. Each bar contains data associated
with a class or grouping of data. Understanding the distribution of the data across
the groups is often useful. For example, the bar might represent the number of
defects detected: 1) for each product component, or 2) within each phase of the
software development life cycle. Sets of bars can also be used to compare two
series, such as measured and expected values. Figure 4.5-8 is an example of a bar
chart.

3. Scatter Charts are used to show possible relationships between two factors. They
plot a series of points based on the values of the two factors. For instance, each
point may represent historical data from a completed project. If the relationship to
be explored is the Size-Schedule relationship, size might be assigned to the x-axis
and schedule might be assigned the y-axis. When all points are plotted, the
strength of the relationship will be illustrated by the tendency of the points to
cluster along a line. Figure 4.5-9 provides an example of a scatter chart.

Part 4 - Applying Software Measures

Page 239

Problem Reports Status
Open Priority 1 and 2 By CI

0

5

10

15

20

25

30

35

40

CI A CI B CI C CI D CI E CI F

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Data as of 31 Jan 98Project: PSM

Figure 4.5-8. A bar chart provides a visual comparison of the relative
values of measured items.

Size - Schedule
Estimating Relationship

0.1 K

1.0 K

10.0 K

100.0 K

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

C
al

en
da

r
M

on
th

s

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project under
consideration

Project: PSM Data as of 31 Mar 98

Figure 4.5-9. A scatter chart shows the possible range of values that
may be reported from actual measurement data.

Well-designed indicators facilitate communication of measurement results. Graphs
should not be too complex, and should convey a clear message. It is better to have
many graphs than to have many messages on one graph. Some guidelines for
developing effective graphs include the following:

� Provide a descriptive title to identify the indicator name, type of data, and
component (if applicable) represented by the graph.

Part 4 - Applying Software Measures

Page 240

� Include the project name or unique identifier.

� Ensure axis labels include type of units and scale markers, such as dates or
counts.

� Provide indicators of major milestones that correspond to the interval plotted when
showing time trends.

� Use the connect-the-dots technique rather than curve-fitting to show trends.

� Show an as-of line or date indicating the reporting period represented by this data.
Many graphs will show plans or projections beyond the as-of date.

� Use contrasting styles for lines, bars, and data points that represent different
groups of data.

� Label the line, bar, and data points directly on the figure, if possible. Otherwise,
use a key that associates a label with each contrasting style of line, bar, or data
point.

� Identify the source of the data. Include the version number of documents.

� Use similar conventions for all reports. For example, always use solid boxes for
actuals and open boxes for plans.

� Adjust the horizontal axis to show the expected range of the data plotted.

� Label significant events and trends in the data.

� Check that the use of percentages does not hide significant trends in the data.

� Use the same axes on both graphs when comparing two graphs.

Figure 4.5-10 shows a graph that illustrates the guidelines listed above.

Part 4 - Applying Software Measures

Page 241

Requirements Stability

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Total
Changes

Review 1 Review 2

Data as of 31 Jul 97Project: PSM

1

2

3
4

5

Conventions:
1. Descriptive Title
2. Milestones
3. Program Name
4. Measurement Date
5. Key

Figure 4.5-10. PSM defines guidelines for graph formats.

Part 5 of the Guide contains a number of specific indicator examples and explains how
they may be used during analysis.

Part 4 - Applying Software Measures

Page 242

Part 4 - Applying Software Measures

Page 243

CHAPTER 6 - ESTIMATION

Estimation is a type of measurement analysis conducted to establish target values or
numerical expectations for subsequent software activities and parameters, based on
currently available data. Estimation is the first of the three types of analyses identified
in Chapter 3. Estimation typically produces projections of the software size, effort,
and schedule required to complete the project. Sometimes, projections of software
quality are also produced. These estimates form the basis for initial project plans and
subsequent replans. Some projects also estimate system performance targets such as
memory utilization and throughput; however, these topics are currently beyond the
scope of this Guide. It is important that estimates for key software measures, such as
size and development effort, be completed at several points during the software
development process.

The first measurement analysis experience for most projects typically involves
estimation. The initial round of estimation often occurs before the software developer
is selected. These initial estimates support the cost-benefit analysis necessary to
justify the project and to establish its overall funding and schedule commitments.
However, the nature of software engineering makes early estimates imprecise and
requires that estimation be repeated throughout the project life cycle. Estimation is an
integral activity in each project analysis cycle.

Poor estimates and misconceptions about the estimating process often contribute to
failed software projects. A bad estimate leads to infeasible plans. When infeasible
plans are implemented, the result is often missed deadlines, inadequate performance,
and/or poor quality. Poor estimation can be attributed to a number of factors,
including:

� Lack of historical data on which to base estimates.

� Lack of estimating experience.

� Lack of a systematic estimation process, sound techniques, or models suited to the
project’s needs.

� Failure to include essential project activities and products within the scope of the
estimates.

� Unrealistic expectations or assumptions.

� Failure to recognize and address the uncertainty inherent in software estimates.

Part 4 - Applying Software Measures

Page 244

The guidance in this chapter cannot substitute for valid historical data or estimation
experience. However, it does help the project manager understand what data, models,
and tools are needed to perform estimates, and how these fit together into a systematic
estimation approach. The PSM guidance includes a structured analysis model,
applicable measurement indicators, and a basic estimation process that helps ensure
that comprehensive and realistic estimates are produced.

6.1 Using the Analysis Model

Figure 4.6-1 shows a simplified model of the issue relationships discussed in Chapter
4. This figure is tailored to support the estimation process. The un-shaded elements
of the model are the components that are typically the focus of estimation. The shaded
components, Technical Adequacy and Development Performance, influence the
relationships between the other elements. The plus and minus symbols along the
arrows indicate the nature of the relationship. For example, as functional size
increases, product size increases, unless counteracted by technology advances
(technical adequacy). On the other hand, as effort increases, for a given amount of
functionality (and rework), the schedule required to complete the work decreases,
although not proportionately. Many studies have shown that this is a costly way to
reduce schedule.

+

+

+

-
-

-

-

-

+ +

+

Functional
Size

Technical
Adequacy

Developer
Performance

Product
Size

Effort

ScheduleCost

Rework Quality

Figure 4.6-1. Estimation Analysis Model

Any element in Figure 4.6-1 that is upstream from a given element can be used to
estimate that element. For example, either functional size or product size can be used
to estimate effort. Given complete and accurate information, the strongest
relationships are found between elements that are close together in the model. In most
cases, however, a project’s estimating information is neither complete nor entirely
accurate. For example, if the final size of a system in lines of code were accurately
known, then a good prediction of effort could be achieved. However, this is often

Part 4 - Applying Software Measures

Page 245

impossible early in the life cycle, when it is usually hard to get an accurate
determination of lines of code. Functional size measures such as requirements or
function points may in some cases give better results for early estimation purposes.

6.2 Estimators

Estimation uses one measure to predict the value of another, or uses one set of data for
a measure to predict subsequent values of another set of data for the same measure.
Estimation usually employs the special type of indicators called estimators, as well as
adjustments referred to as performance factors. Estimators show the estimating
relationship between two measures. For example, the amount of code to be produced
can be used to predict the amount of effort required to produce it. These estimating
relationships are often domain specific. Performance factors adjust the relationship
captured by an estimator to account for the specific project situation. For example, a
developer may have demonstrated a higher or lower productivity than that normally
expected in a specific domain. However, this information by itself is not enough to
estimate effort. An estimate or assumption about size also is needed.

Examples of common predictive Estimators include:

� Functional size to predict product size

� Functional size to predict effort

� Product size to predict effort

� Effort to predict schedule

� Effort to predict cost

� Product size to predict the number of problems (quality)

Examples of performance factors (corresponding to the shaded elements in Figure
4.6.1) include:

� Effectiveness of COTS technology

� Developer productivity

� Developer staffing capability

� Developer error rate

Part 4 - Applying Software Measures

Page 246

The different software estimation models available vary in terms of the estimators (or
estimating relationships) and performance factors that they include. For example,
some models assume linear relationships between size and effort, while others assume
non-linear relationships.

Figure 4.6-2 shows a simple estimator for effort based on product size. The solid line
shows the estimating relationship between product size and effort. As the amount of
software increases, the amount of effort required to produce the software also
increases. The points that are plotted represent data from past projects. The dashed
lines define a region around the estimating relationship into which 95% of the data
falls. For any given value of product size, there is a 95% chance of getting a value of
effort somewhere in that region.

Size - Effort
Estimating Relationship

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

S
ta

ff
M

on
th

s

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project: PSM Data as of 31 Mar 98

Figure 4.6-2. Estimator for Effort

Note that not all of the points lie on the center line. This indicates that the relationship
between size and effort is not deterministic. This means that even if the precise value
of size is known, the precise value of effort can not be determined. Unfortunately,
many estimation models only produce point estimates. Obtaining a probabilistic
statement of the estimate, like that shown in Figure 4.6-2, is probably more realistic.
The figure shows that the 95% confidence interval for the effort required to develop
100 KSLOC ranges from about 10 to 25 staff months. This result gives the project
manager a measure of the uncertainty assumed in the estimation process.

Estimates are a common source of uncertainty in software projects. While estimators
can help to arrive at a predicted outcome, they also should help to assess the amount of
variability associated with the predicted outcome. The project manager must

Part 4 - Applying Software Measures

Page 247

understand the level of confidence that can be placed in the estimate, as well as the
estimated value itself.

6.3 Estimation Process Overview

This section describes a basic estimation process. This process involves four basic
activities as shown in Figure 4.6-3. The first activity is to select an estimation
approach. This approach may use a formal software estimation model or a technique
based on simple estimation relationships. Note that while software estimation models
are part of the process, a model is not a process in itself. Next the estimation model
should be mapped to the project activity structure and calibrated with historical data or
data from a recent project. Estimates are then computed using the selected approach.
Finally, the estimates are evaluated and compared with project constraints. If the
estimate does not satisfy the project constraints, then appropriate adjustments are
made and the estimate is performed again.

Objectives
Constraints

Assumptions

Project Data
Historical Data

Project Data
Historical Data

Plans and
Uncertainties

Select
Approach

Map and
Calibrate

Compute
Estimate

Evaluate
Estimate

Adjustments

Figure 4.6-3. The Estimation Process

Estimates form the foundation for more detailed planning. They should be
documented in the project management plan or software development plan. Re-
estimates should be performed periodically throughout the project life cycle.
Typically, this is done at major milestones and when significant changes to
requirements or project constraints require a new plan. As the project progresses and
more information becomes available about actual project performance, the accuracy of
estimates should increase.

Part 4 - Applying Software Measures

Page 248

6.4 Identify the Approach

The first activity in the estimation process is to select an appropriate estimation
approach. Many different software estimation methods and tools are available. The
following sections describe the types of approaches available, provide selection
criteria, and explain how these approaches are used.

6.4.1 Types of Estimation Approaches

Estimates usually are developed using one or more models or techniques. A model is
an idealized representation of real-world relationships. It may be represented as a
complex mathematical formula, simple arithmetical expression, a set of rules, or a list
of descriptive statements. Regardless of the sophistication of the model, the quality of
the estimates it generates are no better than the assumptions and the data entered into
the model. Four major types of estimating models are described below.

Parametric Models

Parametric models assume that one or more mathematical relationships exist among
size, effort, schedule, and quality. These models also assume that the relationships are
affected by measurable performance factors (also called parameters). These
relationships are established based on theoretical reasoning or analysis of historical
data.

Parametric models generally have the form:

Effort = A * (Size)B * C

Estimated effort is the output of the model and it is expressed in hours or person
months. The most important input into the model is software size, which abstractly
represents the amount of software functionality. The size parameter is known to be
the most significant predictor of effort. The parameter A is constant. The parameter
B is an aggregation of performance factors that effect the model output, effort, in a
non-linear manner. These non-linear performance factors have the effect of adjusting
the size parameter more when it is big than when it is small. This causes the factors to
be more influential on bigger software projects than smaller ones. The parameter C is
an aggregation of a set of performance factors that effect effort linearly. These linear
factors have a directly proportional influence on effort regardless of software size.

To give the best results, parametric models need to be calibrated to data from the local
development environment. Calibration usually has the effect of adjusting only the
constants in the model, such as the constant A described in the general model above.
While calibrating all of the parameters in a parametric model takes a tremendous

Part 4 - Applying Software Measures

Page 249

amount of data, only a few data points may be required to calibrate a model’s
constants to local development conditions. Most estimation tools recommend
calibration.

The Constructive Cost Model (COCOMO II) (Boehm, et al., 1995) is an example of a
parametric model for estimating effort and schedule from software size, entered either
in source lines of code or function points. COCOMO II is in the public domain and is
freely available. Twenty-two performance factors are then applied to yield an effort
estimate in person months. For example, one of these factors is applications
experience, a linear performance factor. A high level of experience reduces the
estimated effort by 23% relative to nominal; a low level of experience increases it by
22%.

COCOMO assumes that schedule is a function of the effort. Most parametric models
break schedule and effort estimates down by major activity or phase. The activities
and phases assumed by the models may not match the project plans; therefore,
adjustments may be required. Few parametric models support both effort/schedule
estimation and quality estimation.

Numerous estimation tools are available to implement COCOMO and other
parametric effort and schedule models. Some can be obtained for free, while others
are quite expensive. The level of vendor support varies widely as well. Select the
estimation method before acquiring a supporting tool.

Activity-Based Models

Activity-based estimation is sometimes referred to as activity-based costing or bottom-
up estimating. The activity-based approach depends on collecting information about
the size, effort, schedule, and quality of all of the software products and activities
comprising a typical project. This information is used to estimate each individual
activity for each product. These estimates are then aggregated to produce the project-
level estimate.

For example, the effort required to design each lower-level software component would
be estimated separately and then added together to get an effort estimate for system
design. Some bottom up approaches then use project-level characteristics to inflate or
deflate the estimate to account for product, project, and technical risks. The activity-
based estimation approach pre-supposes a detailed knowledge of the product to be
built and the process to be employed.

Part 4 - Applying Software Measures

Page 250

Analogy

The analogy approach involves a detailed comparison of the characteristics of the
proposed system with other previously completed systems. Data from similar or
analogous systems form the basis for the proposed system’s estimates. Differences
between the systems are identified and appropriate changes are applied to adjust the
size, effort, schedule, and quality to fit the new situation. Analogy may be the only
way to estimate projects where few precedents or little historical data is available.
While estimates based on analogy can be generated from just one similar project,
getting an accurate estimate requires a detailed understanding of both the analogous
and estimated project.

Simple Estimating Relationships

The estimation approach may be viewed as a simplification of the parametric modeling
approach. Simple estimating relationships based on local historical data are used
instead of a comprehensive mathematical model. Examples of simple estimating
relationships include productivity and error rate. For example, productivity can be
used to estimate the effort required to develop a new project within the same
organization:

Effort = Size * (Person Months / Size)

The productivity number, person months / size, is determined from past projects. The
size input is the estimate of size for the new project. The result is estimated person
months of effort. The estimate is then used with data on the percentage of effort spent
in each phase of the development (collected from past projects) to estimate the amount
of effort for each phase of the new project. For example, assume that the estimate
effort for the new project was 50 person months and the percentage of effort spent in
the design phase from previous projects was 33%. In this case, the estimated design
effort required for the new project would be 16.5 person months.

Estimating relationships generally do not apply outside of the organization and
software application domain that provided the data. This is because a simple
relationship like productivity assumes that all of the factors that effect effort are the
same among past and future projects. If they are significantly different, then a
parametric model should be considered because the model’s factors are individually
adjustable.

6.4.2 Selecting an Estimation Approach

All of the estimating methods discussed above can give good results under the right
circumstances. The primary considerations in selecting an estimation approach are

Part 4 - Applying Software Measures

Page 251

whether its assumptions match the project, and whether the data required by the
approach is available from a reliable source. Some specific factors to consider in
selecting an estimation approach include:

� Whether the activities covered by the model or approach match the planned
activities for the project in question.

� Validity of the approach at different levels of project aggregation (some
approaches/models are better applied at the system, level rather the component
level).

� Quantity, quality, and type of historical data on which the model is based.

� Level of understanding of the software system being estimated.

� Availability of local historical data to calibrate the model or approach.

� Applicability to the type of software being developed, such as COTS, reuse, and
built-in test.

� Availability of actual “to date” data from the project to produce “estimates to
complete.”

� Ability to provide reasonably accurate values for the parameters which must be
provided as inputs to the model.

� The price, documentation, and support of the supporting estimation tool, if any.

Three of the most important factors to consider in selecting an estimation approach
are:

• The level of understanding of the software problem that is required.

• The nature and amount of historical data that is required.

• The mathematical difficulty of implementing the approach and understanding its
results.

Figure 4.6-4 summarizes these factors for the four basic estimation approaches
discussed above.

Part 4 - Applying Software Measures

Page 252

Understanding
Assumed

Historical
Data
Required

Mathematical
Complexity

Parametric
Models

General descriptive
information

Multiple
projects

Complex
Statistical
Techniques

Activity-Based
Estimates

Detailed process
information

Very Detailed
data for a
few projects

Arithmetic

Analogy Detailed product
information

At least one
similar
project

Arithmetic

Simple
Estimating
Relationships

General descriptive
information

Multiple
projects

Simple Statistical
Techniques

Figure 4.6-4. Key Considerations in Selecting An Estimation Approach

The four estimation approaches differ significantly in terms of the assumed level of the
understanding about the intended software application. Most parametric models
require as input only an estimate of size and check-off ratings for the appropriate
performance adjustment factors. Activity-based estimation requires a detailed
understanding of both the product to be implemented and of the process to be followed
in implementing it. Analogy requires detailed project knowledge to be able to
recognize specific differences between the proposed system and the system that forms
the basis for the estimate. Simple estimating relationships require minimal knowledge
about the application that will be produced.

All four estimation approaches require some historical data in order to produce
meaningful results. Most popular parametric models are based on an analysis of
extensive historical data from many organizations. However, the best results are
obtained when the model has been calibrated with local data (see Section 3.5). Using a
parametric model without calibration should be considered only as a last resort.
Activity-based estimation requires detailed data about the process to be employed.
Typically, data should be available for several projects so that the probable range of
performance can be estimated. Analogy requires data from at least one similar project.
Simple estimating relationships require data from multiple projects within the
organization developing the project.

The conceptual and mathematical difficulty of the four approaches varies
considerably. This is an important consideration because the project manager does not
need just a number, but needs to understand what that number means. Parametric
models generally involve complex mathematical formulas. Calibrating a non-
parametric model may require knowledge of statistical techniques such as multiple and
non-linear regression. Activity-based estimation and analogy generally do not require

Part 4 - Applying Software Measures

Page 253

more than basic arithmetic. However, product and process structures can be complex,
and tallying the components may be arduous. Generating and using simple estimating
relationships only requires a limited knowledge of statistical concepts.

Using Estimation Techniques

Selecting and using an initial estimation approach does not satisfy the project’s full
need for estimation information. Parametric models are often used early in the life
cycle because they can produce an estimate based on little input data. For most
models, all that is needed is an approximation of software size. Of course, estimates
based on models that have not been calibrated with local data, or whose performance
factors have not been adjusted to the realities of the project, frequently turn out to be
wrong by an order of magnitude. Unfortunately, project managers often act on these
early estimates as if they were certainties. This level of uncertainty can be partially
mitigated by applying multiple methods and re-estimating periodically through the
project life cycle.

Confidence in an estimate increases when more than one estimation approach is used,
especially if there is uncertainty as to whether or not all of the assumptions of any one
method have been satisfied. For example, the results of a parametric model can be
checked against results from simple estimating relationships. The model adjustments
for the assumed effects of performance factors can result in productivity that is far
beyond the past level of performance for that organization. That may not be a realistic
estimate.

It is also important to re-estimate at various points throughout the project. The
amount of information available increases over the life of the project; therefore,
estimates should become increasingly accurate. These later estimates should be based,
to the maximum possible extent, on actual project data collected to date. There are
several ways in which new estimates can be performed. For example, a parametric
model could be re-run with new size inputs that may even include the actual results for
some product elements. Subtracting the budget and schedule expended to date results
in the estimate to completion. Alternatively, the profile generated by the estimate can
be compared with actual project performance. For example, if the project has
consistently run over its original budget and schedule to date by 30%, the estimate for
the remaining activities could be increased by 30%.

Few of the popular parametric models work well when applied to of sustaining-
engineering projects. The problem begins with the measure of size. In many
instances, neither function points nor lines of code accurately reflect the workload of a
maintenance project. This consists primarily of handling change requests and problem
reports. The technical activities also tend to be organized differently. Simple
estimating relationships that are based on local data have provided good results, in

Part 4 - Applying Software Measures

Page 254

some cases. For example, estimates of sustaining engineering resources may be based
on the average effort per change or problem fix that has been experienced on a similar
project. Major enhancements, the other part of sustaining engineering, can be handled
similar to development.

6.5 Map and Calibrate

Regardless of the estimation approach selected, it must be tailored to the unique
characteristics of the project. Tailoring involves two major considerations: mapping
the scope of the method to the scope of the project, and calibrating the method with
local historical data.

Most estimation methods make some assumptions about the activities and products
included within the scope of the estimate. For example, many parametric models do
not cover requirements analysis. Most assume that a minimal level of documentation
will be produced. It is important to map the development approach assumed by the
estimation model to the development approach that actually will be employed by the
project. This is especially important on a project using incremental development.
Differences may be resolved by inflating or deflating the estimate appropriately.
During project planning, prior to selecting the developer, the detailed activities and
development process may not be known. As the nature of the product and process
become better understood, this mapping should be revisited.

Calibration is a particular concern for users of parametric models. Analogy, activity-
based estimating and simple estimating relationships can not be considered without
some historical data from the local organization. Parametric models generally are
developed from an analysis of historical data from many organizations, none of which
may be similar to the organization implementing the project. Some estimation tools
provide a facility for entering local data and “running the model in reverse” to
calibrate it.

Implementations of public models like COCOMO II via spreadsheets or paper and
pencil will require computations by the analyst performing the estimate. The historical
data used to calibrate a model should be as similar as possible to the proposed project,
including the application domain, process, and personnel.

Once the project is underway, data from early activities can be used to calibrate the
estimation approach. For example, the actual productivity experienced on the first
build can be substituted into the simple estimating relationship for planning subsequent
builds.

No estimation method guarantees good estimates. Experience has shown that model
accuracy is specific to an organization. Using historical data from the organization

Part 4 - Applying Software Measures

Page 255

is essential to evaluate estimation accuracy and to improve the accuracy of future
estimates.

6.6 Perform Estimate

This activity of the estimation process produces numerical predictions for the size,
effort, schedule, and quality of the software project. The estimates of these quantities
are dependent on each other, and are usually performed in the order listed. However,
it frequently is necessary to iterate these tasks to achieve an estimate that satisfies all
project constraints.

6.6.1 Size Estimation

Typically, the first component of an estimate to be produced is software size. The
software size estimate may be prepared in terms of functional size, physical size, or
both. Since it is the first activity in the estimation process, getting a good size estimate
is essential to getting good estimates of effort, schedule, and quality. Software size is
closely linked to the type of software work required to produce the desired system.
Consequently, size estimation for different types of work are handled differently. The
types of work may include new development, COTS component integration, or
maintenance. Unfortunately, few of the models and tools available accommodate the
full range of common software scenarios.

Size Measures

The first pre-requisite for size estimation is to select a size measure. Following the
PSM software measurement tailoring process should lead to selecting an appropriate
measure. Two size measures widely used in software estimation are source lines of
code (SLOC) and function points (FP). Both of these measures have several popular
variants.

The FP measure considers software from an external-systems perspective. It counts
system externals such as inputs, outputs, interfaces, and reports. FP has proven to be
especially useful in user-driven systems, such as transaction processing and
information systems. FP estimation requires knowledge of the system’s functionality
and of the FP counting methodology.

The SLOC measure considers software from an internal structural perspective.
Counts of SLOC require knowledge of the potential software design. SLOC often
works well with analogy and activity-based estimation methods. The rules for
counting SLOC are substantially simpler that those for FPs.

Part 4 - Applying Software Measures

Page 256

Both size measures are labor intensive to compute early in the life cycle. Once code is
completed, SLOC can be counted automatically from source code. However, prior to
that, SLOC is more difficult to estimate.

Initial Estimates

Estimating size early in the life cycle, regardless of the size measure selected, requires
an examination of software requirements and specification data. Early in the life
cycle, function points are counted directly from requirements and design
specifications. Several FP counting methods are available. Early in the life cycle,
SLOC estimates are often based on analogy with previous experience by taking
advantage of similarities between the current system and previous software designs.
Alternatively, a high-level architecture may be developed and used to estimate the
number of units. Units can be converted to SLOC by multiplying by the average
SLOC per software unit or component from past experience. The best results are
obtained by estimating the size of a prospective system to the lowest degree of
resolution that is economically possible. Typically, separate size estimates are
produced for each software component.

Re-Estimates

Software size estimates should be updated during the course of the development. This
may be performed in the same manner as the initial estimate, but better results are
obtained by taking advantage of actual data from the project. For example, upon the
completion of design, or a significant portion of it, the number of components can be
determined more accurately.

During detailed design, SLOC can be estimated by multiplying the number of design
statements by an “expansion ratio” of the number of SLOC generated from each
design statement. Such a ratio can be developed from previous experience.

The specifications used as a basis for FP estimates should also become further refined
with each activity of development, making more accurate estimates possible.

Non-Developed Item (NDI) Estimates

A new software system may be composed of code from many sources including new,
modified, reused, and commercial off the shelf software. The amount of code from
each source should be estimated separately because the process for using them is
significantly different from that of new development.

Part 4 - Applying Software Measures

Page 257

Most of the effort associated with reused and COTS software comes from the need to
integrate that software with the developed code, rather than from designing or coding.
The cost of integration can be significant. If any reused or COTS software must be
modified as part of the project, the required effort is likely to increase dramatically.
Generally, separate size estimates should also be made for each language type.

COTS and reusable software may also have an associated licensing or purchase cost
that needs to be included in the project estimate. While this does not contribute to the
effort estimate, it should be included in cost estimates.

Sustaining Engineering Estimates

During both routine and emergency maintenance, relatively little of the systems’
software gets changed with each release. However, a substantial effort must be
expended to determine which lines of code must be changed and to ensure that there
are no unintended side effects of the change. Relatively few changes are made to
system interfaces. Consequently, neither SLOC nor FP work well for most sustaining
engineering organizations.

The most common unit of size used in sustaining engineering estimation is a count of
change requests and/or problem reports. In many cases, these are rated subjectively
by difficulty for input to the estimation of effort.

6.6.2 Effort Estimation

Effort estimation may be the most understood part of the estimation process, and has
the most support from estimation models and tools. During this activity, the software
size estimate is converted into an estimate of effort by applying an appropriate
estimating relationship. A simple technique is to divide the size estimate (e.g., SLOC)
by productivity (e.g., SLOC/hour) to get effort (e.g., hours). Many estimation models
use a non-linear relationship between size and effort, assuming that as software size
increases the effort required per SLOC or FP increases. Conversely stated,
productivity goes down as the software system gets larger.

Most estimation models also provide for other adjustments to productivity. These
adjustments, or performance factors, generally fall into the two categories: process and
product factors. Process factors are based on the characteristics of the project
software development process, including the tools used and the skill level of the
development personnel. Product factors include attributes such as the nature of the
prospective operational environment, required reliability, and application complexity.
The values of these parameters are selected as part of the estimation process to raise or
lower the productivity to more accurately reflect expected project conditions. While
estimation models may provide from 15 to 100 adjustment factors, most organizations

Part 4 - Applying Software Measures

Page 258

will find that their performance is only affected by a few of them. Simple estimating
relationships based on the organization’s historical data give the best results in
maintenance.

If multiple types of software are included in the estimate, then the effort for each type
must be estimated separately and the results added together. Alternatively, the sizes
can be converted to a common unit by a weighting algorithm, and then used as the
basis for effort estimation. This is necessary even if size is measured in function
points. It is generally true that 100 FPs delivered via reuse require a different level of
effort than 100 FPs delivered via new development.

The preceding discussion demonstrates the need for care when dealing with
productivity. In order to understand what a productivity number means, it is necessary
to know the activities and types of software that are included, as well as the nature of
the application and the software process.

6.6.3 Schedule Estimation

Schedule estimation is primarily concerned with answering the question: “How long
will the project take?” Project duration can be estimated using various techniques. A
parametric model may be used for this purpose. Another method is to employ the
bottom up or activity based method in which the calendar time required to perform
each constituent activity is estimated. This method can be employed separately to
develop detailed plans for the project. However, a parametric model also should be
used to provide a sensibility check on a bottom-up or activity-based estimate. Most
parametric models provide an estimate of project duration as a function of the
estimated effort required for the project. For best results, the model used should be
calibrated to the actual project experience of an organization. The same model often
can be used to estimate the amount of time required to perform a major product
activity, such as system design or system testing, provided that the model is properly
calibrated.

One of the primary mistakes made when estimating software schedule is to ignore the
critical path dependencies that exist between defined software components. There are
limits on the degree to which individual components can be developed in parallel, and
limits on the degree of overall software development schedule compression. What may
appear as logical from a mathematical sense may exceed the validity of the estimation
approach or related model.

Once duration has been estimated, another important question is “What is the best
staffing profile (in terms of applied effort per month) over the project duration?” An
initial estimate of the distribution of effort during the project can be obtained by using
various mathematical models. One such model is the Rayleigh equation. The

Part 4 - Applying Software Measures

Page 259

Rayleigh curve has a shape with a single peak, indicating a gradual build-up and a
gradual decline in the application of resources throughout the project. This model
form is especially valuable during the initial stages of project planning to indicate the
peak level of personnel resources needed. A feasibility analysis of the staffing profile
may suggest that the estimated peak staffing level is not feasible. Figure 4.6-5
presents an effort curve based on the Rayleigh equation.

Effort Allocation

0

20

40

60

80

100

120

140

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

S
ta

ff
M

on
th

s

Plan

Data as of 30 Jun 97Project: PSM

Figure 4.6-5. Effort Indicator Based on the Raleigh Curve

6.6.4 Quality Estimation

Software systems often are required to meet certain “quality” objectives. For example,
a requirement might be that all known Priority 1 failures must be corrected prior to
system delivery. Occasionally, quality is specified in terms of mean-time-to-failure.
In order to achieve such quality objectives, the likely error content of the software
must be estimated and actual error trends tracked.

Defect rates from past project experience can be used to make initial estimates of
quality. However, integrating data from on-going project performance is more
difficult. Models that support this fall into two categories:

� Reliability models are based on measuring mean-time-to-failure, usually during
integration and test.

� Transaction models are based on measuring defect insertion and detection rates
throughout the life cycle.

Part 4 - Applying Software Measures

Page 260

Both types of models require systematic data collection efforts over multiple projects
to develop good estimates for a specific project.

6.7 Evaluate Estimates

The estimates resulting from the preceding tasks should be evaluated from three
perspectives:

� Quality of the estimate - Are the resulting estimates complete, consistent and
reliable?

� Satisfaction of constraints - Are the estimates within project constraints in terms
of cost and schedule?

� Documentation of the estimate - Are the basis for the estimates, assumptions,
and the results fully recorded?

Some of the key factors to consider in determining the quality of an estimate include
the following:

� Has a firm foundation been established for the estimate of software size?

� How well does the life cycle assumed by the estimation model map to the
project’s process?

� Has the estimation model been calibrated with local historical data or recent
project performance data?

� Have reasonable assumptions been made about performance factors affecting
productivity, schedule, and quality?

� Are aggressive goals or targets supported by realistic strategies for achieving
them?

� Are the results of alternative estimation methods consistent, if any have been
applied?

� Has the level of uncertainty in the inputs and outputs of the estimation process
been identified?

� Have the estimation relationships been adjusted so that the results meet pre-
defined project constraints?

Part 4 - Applying Software Measures

Page 261

Estimates that do not satisfy the evaluation criteria above should be re-visited. Poor
estimates reduce the likelihood of project success.

Projects are often constrained in terms of overall cost or required delivery dates. Even
a quality estimate, as defined above, may yield results outside those limits. If the
estimates resulting from the preceding tasks do not meet the constraints, make
appropriate adjustments and repeat the preceding task. When adjusting estimates,
attempt to make trade-offs, rather than “fudge” the results. For example, reducing
schedule and functionality may be an effective strategy for reducing cost to meet that
project constraint.

Good documentation of the estimates helps improve the estimation process and
facilitate periodic re-estimation. During re-estimation a determination must be made
as to whether or not any initial assumptions have changed. Those assumptions must
be recorded during initial estimation for review during the re-estimation activity.
Information about how well the estimation process worked identifies potential areas
for improvement.

Part 4 - Applying Software Measures

Page 262

Part 4 - Applying Software Measures

Page 263

CHAPTER 7 - FEASIBILITY ANALYSIS

Feasibility Analysis is conducted to evaluate the accuracy and realism of plans,
estimates, or assumptions associated with an issue. For a project plan to be feasible,
the individual elements of the plan must be technically realistic and achievable, and the
elements must be consistent in relation to each other. For example, an assessment of
the feasibility of resources and cost for a project must consider whether the proposed
work can be accomplished with the proposed resources, and whether costs are
allocated appropriately for the planned expenditure of resources. Usually, only parts
of an overall plan are unrealistic. However, those situations need to be recognized and
corrected to ensure project success. Feasibility analyses should be performed
throughout the software life cycle as plans are developed and revised, based on
changing events and actual performance. One of the major reasons that software-
intensive projects fail is that the development process cannot achieve unrealistic
plans and objectives.

The process of feasibility analysis is complicated by the fact that, in the typical
software acquisition scenario, two sets of plans must be assessed for feasibility:

� Acquirer Plan - The project office produces high-level estimates and plans during
the project planning phase. These are typically based on mission requirements and
general assumptions about the development approach to be employed. These early
plans should be subject to feasibility analysis.

� Developer Plan - The contractors who submit proposals produce their own
estimates and develop more detailed software development plans in response to the
acquirer’s requirements. These estimates are usually included in their proposals.
The feasibility of these plans should be a factor in source selection.

Once a developer has been selected and the project begins, both the acquirer and
developer plans are likely to change to incorporate new information about the project.
A lack of planning changes may suggest that the project is not actively being managed
towards its objectives.

Feasibility analyses should be conducted whenever significant changes are made to
either plan. Significant changes that warrant feasibility analysis are those that involve
basic planning assumptions, including:

� Scope of the software problem - functionality or requirements increases,
decreases, or changes

Part 4 - Applying Software Measures

Page 264

� Organizational or technology assumptions change - a plan to leverage new
technology has proven infeasible, expected use of software reuse is abandoned,
organizational resources planned for are not available

� Performance analysis - indicates whether current plans are being met

Unfeasible plans are a primary cause of risk on a project. Plans that cannot be
realistically implemented from a technical perspective increase the probability of
something going wrong. The longer an unrealistic plan is followed, the greater the
potential impact on the project.

Feasibility analysis should be performed using information about individual plan
elements, such as budget and schedule, and by integrating the information available
from several plan elements. The following sections explain how software project plan
components are selected for feasibility analysis, how different types of individual plans
are assessed for feasibility, and how to perform feasibility analysis in a systematic and
integrated manner.

7.1 Using the Analysis Model

As discussed in Chapter 1, project issues are not independent. This fact affects not
only estimation and performance analysis, but feasibility analysis as well. Figure 4.7-
1 introduces a simplified version of the structured analysis model introduced in
Chapter 5. This version of the model has also been tailored to serve as a useful
feasibility analysis “roadmap.”

+

+

+

-
-

-

-

-

+ +

+

Functional
Size

Technical
Adequacy

Developer
Performance

Product
Size

Effort

ScheduleCost

Rework Quality

Figure 4.7-1. Feasibility Analysis Model

The plus and minus symbols along the arrows indicate the nature of the relationship
between two components. A plus sign signifies that as the quantity of the first element
of the pair increases, the second element also increases. For example, as functional

Part 4 - Applying Software Measures

Page 265

size increases, product size is also likely to increase, since more structural components
are typically needed to implement increased functionality or requirements. The minus
sign signifies that, as the quantity of the first element of the pair increases, the second
element decreases. For example, as product quality increases, rework should decrease.

The model of Figure 4.7-1 is used to identify individual plan elements that are subject
to feasibility analysis, as well as the checks between plan elements to ensure
consistency. Three types of situations should be examined during feasibility analysis:

� An individual feasibility analysis of the project’s high-priority issues should be
performed. The analysis should look at each individual issue, such as schedule, to
check the plans for consistency. The analyst should review the schedule at various
levels of detail, both at a high level (such as milestone schedules), and at a lower
level (such as work unit progress).

� Plan elements that are upstream of the high-priority issues should be assessed
individually for feasibility, because their validity will influence the feasibility of
the downstream plans. For example, if the primary concern is schedule and the
plan for that looks feasible, schedule could still be jeopardized because the amount
of planned effort may be unrealistic.

� Adjacent plan elements should be assessed for consistency. For example, even if
the individual plan elements of schedule and effort allocation are feasible for the
work planned, they may not be synchronized with staff availability to perform
work as scheduled. These situations must be recognized and resolved to maximize
the project’s chances for success. Figure 4.7-2 shows an example of an indicator
that compares effort and cost plans to assess feasibility. Differences between the
effort and cost plans must be explainable in terms of planned changes in the cost
of resources or other expenses, or the plans must be judged to be inconsistent.

The first two analysis concerns generally are addressed by checking the individual plan
elements for adequacy and consistency per the checklists in Section 2.2. The third
analysis concern is addressed by comparing the baselines for the plan elements, as
represented by measurement indicators. Each planning element may be feasible, but
the overall project plan may prove to be infeasible when all factors are considered
including effort, schedule, and technical factors.

Part 4 - Applying Software Measures

Page 266

Feasibility Analysis

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

D
ol

la
rs

 (
in

 T
ho

us
an

ds
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
um

be
r

of
 S

ta
ff

M
on

th
s

Cost
Effort

Project: PSM Data as of 31 Mar 98

Figure 4.7-2. Integrated Analysis of Feasibility

7.2 Indicator Baselines

Chapter 5 defined an indicator as a measure or combination of measures that provide
insight into a software issue or concept. An indicator usually entails a comparison
between measures. In feasibility analysis, the comparison is between sets of plans or
between plans and historical data. Feasibility analysis is concerned with assessing the
realism of the planning baselines.

For purposes of feasibility analysis, two types of baselines may be defined: those
based on plans and those incorporating thresholds or targets. The following sections
provide examples of each along with evaluation guidelines.

7.2.1 Trend-Type Baselines

Plan baselines usually are based on some type of estimate. Baselines are developed
by taking an overall estimate and apportioning it to more detailed levels of the project
structure. These detailed estimates are usually based on project component,
functionality, or activity structures.

Trend-type baselines usually are represented in one of two ways: cumulative plans and
profile plans. A cumulative plan shows the total quantity planned to be achieved to
date, such as the total cost to date. A profile plan shows the planned quantity
apportioned to each reporting period, such as the number of staff assigned to the

Part 4 - Applying Software Measures

Page 267

project each month. Figure 4.7-3 provides an example of a cumulative plan. Figure
4.7-4 provides an example of a profile plan (with two planning baselines).

Cost Profile

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
ol

la
rs

 (
In

 T
ho

us
an

ds
)

Plan

Funding
Plan

Budget

Data as of 31 Dec 97Project: PSM

Figure 4.7-3. Cumulative Plan Example

Effort Allocation

0

20

40

60

80

100

120

140

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

S
ta

ff
M

on
th

s Plan 1
Plan 2
Actual

Data as of 30 Jun 97Project: PSM

Figure 4.7-4. Profile Plan Example

Plans often fail because they provide insufficient detail to effectively coordinate
project activities. Most projects develop high-level estimates of size, effort, cost and
schedule, but fail to allocate the estimates to lower-level project components and
activities. Without these detailed plans, status cannot be evaluated objectively.

Part 4 - Applying Software Measures

Page 268

Moreover, the lack of detail makes it easier for important project components to be
omitted from the plan. If discovered late in the project, these activities and products
could seriously impact project success. Thus, the first activity in feasibility analysis
of plan baselines is to check that the plans are complete.

Consider the following items to ensure that plans are defined in sufficient detail:

� Resources - organizations, people, and computers

� Activities - life-cycle tasks, support tasks, holidays, and vacations

� Components - units, test cases, lines of code, requirements, and documentation

The following items may be evaluated to assess the feasibility of specific plan
elements:

� The overlap between project activities is reasonable across the schedule.

� The rate of planned progress is reasonable (slope on the indicator).

� Planned performance is consistent with past performance.

� Targets such as complexity and problem aging are reasonable in the project
context.

The many participants involved in the planning process may also contribute to
problems. Often, the detailed project plans are developed by individuals who did not
develop the original estimates. The assumptions made while developing estimates may
not be carried over into the detailed planning process, or the planner makes new
assumptions that make the original estimate infeasible. The latter often occurs as
estimates get passed through the management chain. During a feasibility analysis, the
measurement analyst must look for plans that are based on sound engineering
judgement or historical data, rather than on unrealistic constraints.

7.2.2 Limit-Type Baselines

Sometimes a planning baseline is really a single value, such as target, goal, limit, or
threshold, against which a set of actual values are compared. Many of these limit-type
baselines originate with product requirements, such as code complexity, response time,
and memory utilization. They may also be the basis for final software acceptance
criteria. These types of baselines are typically represented as a straight line on a
graph. Figure 4.7-5 provides an example. The figure shows how data from previous
projects can be used to assess the realism of a response time limit. The figure shows
that several past projects met or came close to the limit; therefore, it seems feasible.

Part 4 - Applying Software Measures

Page 269

Response Time
On-Line Functions

0

10

20

Query

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Program 1
Program 2
Program 3

Data as of 31 Mar 98Project: PSM

Requirement

Figure 4.7-5. Threshold Baseline Example

Rules of thumb, or norms, are sometimes used to derive the measurement baseline for
an indicator. For example, in maintenance, a rule of thumb might be that the backlog
of change requests should not exceed some defined amount in terms of change requests
and estimated hours of effort. Another example is that no more than a certain
percentage of discovered defects should remain open at any point in time. These rules
of thumb are then applied against the actual backlog and actual percentage of open
problems during performance analysis.

Feasibility analysis of baseline threshold limits and rules of thumb should evaluate
whether or not:

� The requirement seems reasonable given the technology characteristics (language,
platform, and processing volume) and process/project characteristics (project
management strategies, schedules and cycle time, and internal procedures.

� There exists sufficient precedent that the requirement is possible, based on other
similar projects, new technology being applied, or other factors.

� The requirement supports overall project objectives.

Part 4 - Applying Software Measures

Page 270

7.3 Feasibility Analysis Process Overview

The criteria for assessing the feasibility of individual plan elements discussed in
Section 7.2 are applied in the three-task process that includes evaluating plans,
assessing impact, and identifying mitigation alternatives, as shown in Figure 4.7-6.

Risks

Plan Data
Estimates

Assess
Impact

Evaluate
 Plans

Identify
Mitigation

Alternatives

Figure 4.7-6. Feasibility Analysis Process

The first task is to evaluate the feasibility of project plans. Inputs to this task are the
software planning data and estimates, as well as the external constraints and expected
relationships. The necessary indicators to support the analysis are then generated. If
plans are determined to be unachievable or unrealistic, given the current planning
assumptions and project constraints, the next two tasks should be executed. The
impact of the problem is assessed by localizing its source and evaluating its scope.
For example, only a single function in the software may be represented by an
unrealistic development plan, such as too short of a development schedule. More
indicators may be generated to accomplish this. Unrealistic or unachievable plans
should be considered major risks to the project.

7.3.1 Evaluate Plans

Each individual plan element that is related to a high-priority project issue should be
evaluated against the criteria provided in Section 7.2. Then, related plan elements of
the model in Figure 4.7-1 should be compared for consistency. The feasibility of a
plan depends on the accuracy of assumptions and data as well as the effectiveness of
the planning process. Collecting the estimates used as a basis for developing the plan,
planning assumptions, and historical data will facilitate the analysis.

Some of the key considerations in determining the feasibility of a plan are:

Part 4 - Applying Software Measures

Page 271

� Basis for the estimate - How completely was the problem analyzed? How
reliable is the historical data? Are the measures well defined?

� Realism of adjustments - Do any adjustments for unique product or process
factors reflect likely impacts, rather than optimism?

� Completeness of plan - Have all significant activities and products been
accounted for? A major omission could surface as a problem later.

� Consistency of plan - Do dates and totals match across all dimensions of the
plan?

� Confidence in process - Has the process that determines the plans or targets been
used before? Did it give good results?

� Changes in assumptions or environment - Have any significant changes
occurred in the underlying assumptions or project environment that might affect
the validity of the plan?

� Project parameters - Are the performance levels or targets in the same range as
those that have been achieved on similar projects?

Software development plans should be evaluated, both from a breadth and a depth
point of view. The depth of a plan focuses on a detailed feasibility and internal
consistency check of each plan element, such as schedule, effort, and size. For
example, the measurement analyst should check that aggregated totals and summary
values match more detailed counts and values, and that timeframes match on both
high- and low-level plans.

Evaluation of the breadth of a plan focuses on consistency and compatibility across
plan elements. For example, the measurement analyst should check that totals of the
same planning element (such as software components) match across plans, and that the
effort allocation peaks and valleys correspond to schedule times of peak and low
activities. Breadth is particularly important when considering how one infeasible or
incompatible element can cause downstream damage to related elements, as illustrated
in the analysis model shown in Figure 4.7-1.

It is useful to evaluate the feasibility of one or more plans by comparing them to either
prior plans or actual performance data. If a replan results in adjusting a plan to
correspond with actual performance without taking corrective action to solve the
underlying problem, chances are that the new plan is just as infeasible as the old one.

Plan elements often conflict because they are developed by different people at different
times using different strategies. For example, the project lead may use one strategy for
creating a detailed work unit delivery plan, while the project manager may use a

Part 4 - Applying Software Measures

Page 272

different strategy for cost and effort allocation. Another example is a situation where
developers and testers produce their own plans, resulting in schedule and resource
conflicts.

7.3.2 Assess Impact

The first task in assessing the impact of a planning problem is to localize the source of
the problem and evaluate its scope. This may require taking a more detailed look at
both the planning assumptions and the basis for the estimates upon which the plan
defined.

The estimation techniques discussed in Chapter 6 may be helpful in assessing the
impact of a planning problem. The outcomes for both the best and worst case
situations should be estimated. Estimates should be developed for any alternative that
will be presented to the project manager.

The impact of any identified problems should also be considered. A significant impact
to an item on the critical path should always be of concern.

7.3.3 Identify Alternatives

Alternative courses of action to deal with unfeasible plans include suggested changes
to the plans and their drivers, including development strategies, approaches,
assumptions, and constraints. Feasible alternatives should be prepared so that the
project manager can evaluate them and take action in the last activity of the PSM
application process, make decisions.

The measurement analyst may want to consider performing simulations of alternative
plans or creating “what-if” planning scenarios which could be used to represent
alternative plans and their projected outcomes.

In deciding on a specific recommendation, consider the nature and effectiveness, or
impact, of previous corrective actions. Avoid recommending a corrective action that
will conflict with previous actions, or a corrective action that has already failed to
work in a similar situation.

A feasibility analysis that analyzes the validity of plans should be conducted with
respect to the project’s issues. However, an integrated analysis of plan feasibility is
advised because of the tight coupling between plans for size, cost, effort, schedule and
quality. A project’s failure can result from just one infeasible plan.

Part 4 - Applying Software Measures

Page 273

CHAPTER 8 - PERFORMANCE ANALYSIS

Performance Analysis is conducted to determine whether the software development or
maintenance effort is meeting defined plans, and targets. A key point is that regardless
of its feasibility or goodness, once a project has committed to a plan, performance
can be measured against the plan. The project manager must pay close attention to
how well the software development or support effort keeps to the plan. Even if the
project begins with a “good” plan, if performance begins to deviate from the plan, the
reasons for the deviation must be established and corrective actions taken to ensure
success. The goal of performance analysis is to provide information for decision-
making in time to affect the project outcome. Performance analysis should be
conducted regularly once a project begins.

The guidance in this chapter is not intended as a prescriptive approach to performance
analysis. The process must be flexible in order to analyze the software issues that are
important to the project. Performance analysis must also be viewed as an investigative
process, where analysis is used to track down and isolate problems. This may require
the use of slightly different data, generation of different indicators, and identification
of alternative courses of actions each time performance is analyzed. The following
sections describe helpful analysis tools and a simple process that can be used to gain
insight into project performance.

8.1 Using the Analysis Model

As discussed in Chapter 7, the PSM structured analysis model in Figure 4.8-1 shows
the relationship between project issues and provides guidance for generating
appropriate indicators. The model also serves as a useful performance analysis
“roadmap.”

Part 4 - Applying Software Measures

Page 274

+

+

+

-
-

-

-

-

+ +

+

Functional
Size

Technical
Adequacy

Developer
Performance

Product
Size

Effort

ScheduleCost

Rework Quality

Figure 4.8-1. Performance Analysis Model

The plus and minus symbols along the arrows indicate the nature of the relationship
between two components. A plus sign signifies that the two quantities move in the
same direction. As the quantity of the first element of the pair increases (or
decreases), the second element also increases (or decreases correspondingly). For
example, as functional size increases, product size is also likely to increase, since more
structural components are usually needed to implement increased functionality or
requirements. The minus sign signifies that the two quantities move in opposite
directions. For example, as product quality increases, rework should decrease.

Given this analysis model, there are a number of implications for performance
analysis:

� Projects need current measurement indicators in order to monitor the performance
of identified high-priority issues. These indicators are also useful in monitoring
downstream events for potential problems.

� Projects should consider monitoring elements that are upstream of the project’s
primary issues of concern, because they represent leading indicators for that issue.
For example, if the primary concern is staying within a fixed cost ceiling, effort
should be measured, along with software size, developer performance, and
technical adequacy.

� Analyzing performance for an issue’s leading indicators should provide an early
warning to identify problems related to an issue.

� The tradeoffs between issues must be considered when evaluating alternatives.
Attempting to optimize a project’s primary issue may result in a negative impact
on another issue that may also be important to project success. For instance,

Part 4 - Applying Software Measures

Page 275

attempting to make up a schedule slippage by increasing the number of personnel
on the project also increases overall cost.

8.2 Performance Indicators

Performance indicators may also be classified into two general types, trend-based and
limit-based, according to how they are graphed and analyzed. The primary distinction
between the two is whether or not the expectation (target or plan) is relatively
constant, or whether it changes over time. The following subsections explain these
indicator types in more detail.

8.2.1 Trend-Based Indicators

Trend-based performance indicators are used when the expected or planned value
changes regularly over time. Figure 4.8-2 shows an example of a trend-based
indicator. In this example, a different goal or target for software work units completed
has been set for each week. This is the project’s implementation plan. Actuals are
then plotted on the same figure.

Implementation Progress

0

10

20

30

40

50

60

70

80

90

100

1 Jan 22 Jan 12 Feb 5 Mar 26 Mar

N
um

be
r

of
 C

om
po

ne
nt

s

Plan
Actual

Project: PSM Data as of 10 Mar 97

Figure 4.8-2. Trend-Based Indicator Example

Performance analysis of a trend-based indicator consists of determining whether the
actual project trend corresponds to the baseline, or expected, trend. A concern
identified from evaluating the difference or variance in the example indicator is that the
actual units completed in a given month are substantially lower than planned.

Part 4 - Applying Software Measures

Page 276

An alternative form of trend-based indicator is one used to represent work backlogs for
items such as problem reports. The amount of work to be completed, represented by
the number of problem reports to be fixed, is not known in advance. Therefore, the
plan or target is developed week by week as problems are discovered.

8.2.2 Limit-Based Indicators

Limit-based performance indicators are used when the baseline or expected value
remains relatively constant over time. When limit-based indicators are used,
performance analysis consists of determining whether the actual project performance
exceeds its established bounds.

Figure 4.8-3 shows an example of a limit-based indicator for response time. As long
as the actual response time remains within the planned limit (which may be a contract
requirement), performance is acceptable. Whenever actual values exceed the limit(s),
the cause should be investigated. The conclusion drawn from analyzing the example
indicator is that response time had previously been exceeded for both function types,
but the last test cycle indicates that the problem has been corrected.

Response Time
On-Line Functions

0

10

20

Query Update

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

First
Test
Second
Test
Third
Test

Contract
Requirement
(10 Sec.)

Data as of 30 Jun 97Project: PSM

Figure 4.8-3. Limit-Based Indicator Example

Limits can represent norms, expected values, or constraints. In many cases, limits are
specified as a software requirement. In other cases, they represent a threshold value
established by the project manager. Limit-based indicators are often used to represent
error rates, complexity thresholds, computer utilization targets, and productivity goals.

Part 4 - Applying Software Measures

Page 277

8.3 Performance Analysis Process Overview

The performance analysis process consists of the four tasks as shown in Figure 4.8-4.
The first task is to evaluate the measurement data relative to the issues. This requires
both planned and actual performance data as inputs. During this task, indicators are
generated and analyzed. If problems or risks are identified, then the next three tasks
must be executed. Problem impact is assessed by localizing the problem source(s) and
evaluating the scope of the problem. Additional indicators may need to be generated.
After assessing problem impact, the project outcome is predicted, usually by
extrapolating from current trends in the data. If the predicted outcome does not meet
project objectives, then alternative actions must be identified and evaluated. The
resulting information is provided to the project manager for consideration during the
decision-making activity.

Plans and
Actual Performance
Data

Problems

Assess
Impact

Predict
Outcome

Evaluate
Alternatives

Compare Plan
vs Actual

Figure 4.8-4. Performance Analysis Process

Several of these performance analysis tasks involve collecting additional non-
measurement information. Decisions cannot be based solely on quantitative data.
Project context information may be collected from developer feedback, joint technical
and management reviews, document reviews, and risk analyses. Gathering and
integrating appropriate non-quantitative information is essential to the successful
application of measurement.

8.4 Compare Plan versus Actual

The first task in evaluating performance status is to examine the basic indicators that
correspond to each issue. Problems are recognized by quantifying the difference
between plans and actuals, or between plans and other baselines. If the difference
between these values exceeds the threshold acceptable to management, then the
situation should be investigated further. Consider not only the absolute magnitude of

Part 4 - Applying Software Measures

Page 278

the difference, but also the trend. If a variance has been growing steadily larger over
time, it should be investigated even if it has not yet exceeded a pre-defined threshold.

Because software issues are not independent, an integrated analysis using multiple
indicators also must be performed. For example, a problem that would generally show
up in one issue area (such as effort increases) may be disguised by an accommodation
made in another issue area (such as schedule). The increased effort may not result in a
detectable increase in staff level.

Unfortunately, by the time that a size, effort, schedule, or quality problem is
recognizable as a direct indicator of those issues, the problem has likely become one of
major proportion. Thus, in evaluating performance, the relationships between multiple
indicators must also be considered. Some of the things to look for in performance
analysis are as follows:

� Leading indicators - Often problems will become visible in upstream issues
before they translate into a measurable problem in the issue of immediate concern.
For example, requirements changes usually precede size and effort increases.
Even if resources are not currently a problem on a project, a large number of
requirements changes indicates that resources will become a problem if action is
not taken. Use the structured analysis model to identify likely sources of
prospective problems.

� Critical path items - Even if high-level indicators suggest the project is moving
ahead smoothly, delays and quality problems in a critical path item that are not
recognized and countered early can have a ripple effect late in the project. A good
example is the need for target test hardware to begin software testing.

� Inconsistent trends - Sometimes two related indicators will suggest that different
situations exist. Neither variance taken alone may be large enough to suggest a
problem, but taken together they indicate that some element of the process is not
working as planned.

� Outliers - Individual points that are not part of a trend, but show unusual
behavior also should be investigated. These could include a large change in
productivity, error rate, or complexity.

Figures 4.8-5 and 4.8-6 show an example of a problem made visible by detecting
inconsistent trends. Figure 4.8-5 shows the design progress indicator and Figure 4.8-6
shows the problem report indicator for the same project. While the measure of actual
design progress appears to be only slightly behind the plan, the discrepancy between
the number of open and closed problem reports is increasing. These open problem
reports represent rework that must be completed before the design activity can be
completed. Thus, the trends in these two performance indicators are inconsistent.

Part 4 - Applying Software Measures

Page 279

Design Progress

0

100

200

300

400

500

600

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Planned Units
Actual Units

Project: PSM Data as of 31 Oct 97

SDR

Figure 4.8-5. Development Progress Example

Problem Report Status

0

20

40

60

80

100

120

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Discovered
Closed

Project: PSM Data as of 31 Oct 97

SDR

Figure 4.8-6. Problem Report Profile Example

Once the existence of a problem has been suggested by performance analysis, the
problem should be localized by examining indicators with more detailed data. In the
example above, the problem report indicator should be generated for each of the CIs
within the software design. Identifying the specific source of the problem helps to
determine the cause and select an appropriate corrective action. Figure 4.8-7 shows a

Part 4 - Applying Software Measures

Page 280

table of open problems by CI. The table shows that most of the open problems are
associated with CI B.

Problem Report Status
Open by Priority

0

20

40

60

80

100

1 2 3 4 5

Priority

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Data as of 31 Jan 98Project: PSM

Figure 4.8-7. Open Problems by Priority

In many cases, the measurement results can be compared and evaluated within the
boundaries of the project to identify problems. This is especially true for large
projects with many software activities and components. For example, for a project
with a large number of CIs, the defect densities of the CIs with similar designs and
functions can be compared to identify “outliers,” those components with an unusually
high number of defects.

This type of internal comparative analysis generally yields valid results, since the
development process and associated measurement data are usually consistent for the
development of all of the CIs. In some instances, a matrix of the measurement results
related to the key issues can be constructed to compare software activities and
components on a periodic basis. This helps to identify and localize problem areas
using more than one measure. Figure 4.8-8 presents a sample matrix of measurement
results.

Part 4 - Applying Software Measures

Page 281

Maintainability

CSCI Size
(KSLOC)

Total
Valid
Defects

Defect
Density

Number
of Units

Average
Complexity

Units w/
Complexity
> 10

Navigation 124.8 42 0.34 156 9.2 26

Sonar 45.6 12 0.26 68 6.7 15

Weapons 56.6 14 0.25 75 5.2 8

System
Services

75.3 20 0.27 102 7.5 16

Display
Services

168.0 32 0.19 125 8.6 12

Training 25.5 3 0.12 42 4.2 3

Total/
Average

495.8 123 0.25 568 1.3 80

Project: PSM Data as of 31 Mar 98

Figure 4.8-8

Additional context information is usually needed to make valid interpretations of the
cause of a problem. For example, noting a discrepancy between the originally
estimated software size and the current estimate (or actual) size may not provide
enough information for management action. The size difference may result from: 1)
poor initial estimates, 2) significant requirements changes, or 3) changes in the way
size is counted. Depending on the cause of the variance, different actions may be
required.

Sometimes inconsistent, incorrect, or inaccurate data may cause an indicator to
suggest a problem when none really exists. All data anomalies and other potential
inconsistencies should be reviewed with the software developer. However, when
multiple indicators point to a problem, it is usually not just a data issue.

8.5 Assess Impact

The first task in assessing the impact of a performance problem is to localize the
source of the detected variance and evaluate its scope. This may require additional
focused data collection, but usually can be satisfied with the existing data.

Sometimes a substantial difference between planned and actual values may be caused
by outliers, which are values that do not appear to be consistent with the other data
collected. For example, the average cyclomatic complexity of a component may be
significantly higher than others in the system, due to one or two unusually complex
units. Judgments about the whole system should not be based on these outliers.

Part 4 - Applying Software Measures

Page 282

Once the source and scope of the problem has been identified, the magnitude of its
potential impact on project success can be assessed. The magnitude of the impact is
not always proportional to the size of the difference between planned and actual
values. Sometimes, a small problem that arises in one issue area may have a ripple
effect on another issue. Rippling multiplies the effect of a problem.

8.6 Predict Outcome

Assessing the current impact of a problem helps to understand the probable impact on
the project. However, to get a complete picture of the significance of the problem, its
impact must be projected into the future. Eventual project outcomes can be predicted
by projecting current trends as straight lines, or by employing more sophisticated
parametric estimation models for effort, size, schedule, problem reports, and other
measures.

The easiest approach is to extend current trends into the future as a straight line, for
measures such as work unit progress, size growth, and requirements changes.
Alternatively, the amount of the variance to date can be assumed to predict future
performance, and future plans can be adjusted accordingly. For example, if progress
to date has been 20% below plan, the future progress should also be assumed to lag by
20%, unless some specific action is taken to change the project’s performance.

Use these projection techniques to investigate the effects of changes in assumptions on
project outcomes. Exploring these as “what-if” scenarios helps the measurement
analyst to understand which factors most strongly influence project outcomes. They
also help to determine whether or not the project is capable of making up the gap
between planned and actual performance. Throughout these studies, keep in mind the
imprecise nature of such projections. Small differences in predicted outcomes are
probably meaningless.

8.7 Evaluate Alternatives

If the predicted outcome does not satisfy project objectives, alternative courses of
action need to be investigated. Use the structured analysis model to identify where
tradeoffs can be made to bring the project plan into line with project objectives.

For example, if the projected cost from the preceding task exceeds the project
constraint, look for upstream issues that may influence and adjust cost with
appropriate action. The amount of work to be done might be reduced by eliminating
requirements. If the current schedule is aggressive, some late benefits of reduced

Part 4 - Applying Software Measures

Page 283

rework may be obtained by extending the schedule. Productivity might be enhanced
by increasing the level of automation.

Keep in mind that the purpose of this task is to identify specific actions that can be
taken to change the outcome of the project. Just changing the assumptions behind the
project plan does not make the plan any more likely to be realized. For example,
assuming increased productivity in the plans without taking any real action to improve
it will not prevent cost overruns.

The underlying problems and potential actions should be reviewed with the developer
and modified, as appropriate, based on the developer’s feedback. Consider the raw
data, the performance indicators, and context information about the project and recent
events in reaching conclusions. Do not make conclusions based on a single item of
evidence, whether quantitative or subjective. In deciding on a specific
recommendation, the measurement analyst should consider the nature and
effectiveness, or impact, of previous corrective actions. Avoid recommending a
corrective action that will conflict with previous actions, or a corrective action that has
already failed to work in a similar situation.

Once a likely alternative has been identified, it needs to be passed back to the “predict
outcome” task. In order to make a decision, the project manager needs to know what
alternatives are available, as well as the likely consequences of selecting each
alternative. One result of the analysis process may be to identify a new issue and
recommend the collection of additional data to track it. This may require the project to
revisit the measurement tailoring process described in Part 2 of the Guide.

Part 4 - Applying Software Measures

Page 284

PSMPSMPSMPSM
MEASUREMENT ANALYSIS AND
INDICATOR EXAMPLES

PART 5

Part 5 - Measurement Analysis and Indicator Examples

Page 286

Part 5 - Measurement Analysis and Indicator Examples

Page 287

 MEASUREMENT ANALYSIS AND INDICATOR EXAMPLES

Part 5 of Practical Software Measurement: A Foundation for Objective Project
Management provides examples of how measurement indicators can be applied to

systematically analyze software issues.

This part of the Guide is organized into four chapters:

• Chapter 1, Measurement Indicator Example Description - explains how to use

Part 5.

• Chapter 2, Estimation Indicators - includes samples of how measurement indicators

can be defined and analyzed to support estimation.

• Chapter 3, Feasibility Analysis Indicators - provides samples of how measurement

indicators can be defined and analyzed to support feasibility analysis.

• Chapter 4, Performance Analysis Indicators - includes samples of how

measurement indicators can be defined and analyzed to support performance

analysis.

Part 5 - Measurement Analysis and Indicator Examples

Page 288

Part 5 - Measurement Analysis and Indicator Examples

Page 289

TABLE OF CONTENTS

CHAPTER 1 - MEASUREMENT INDICATOR EXAMPLE DESCRIPTION291

CHAPTER 2 - ESTIMATION ...293
2.1 Effort-Schedule Tradeoff ...294

2.2 Size-Effort Estimating Relationship..296

2.3 Size-Schedule Estimating Relationship ...298

2.4 Failure Trend ..300

CHAPTER 3 - FEASIBILITY ANALYSIS..303
3.1 Milestone Schedule..304

3.2 Design Progress...306

3.3 Incremental Build Content...308

3.4 Effort Allocation ...310

3.5 Cost Profile ...312

3.6 Software Size..314

3.7 Response Time...316

3.8 Software Productivity ..318

3.9 Software Origin...320

3.10 Feasibility of Plans...322

CHAPTER 4 - PERFORMANCE ..327
4.1 Milestone Progress ..330

4.2 Design Progress...332

4.3 Effort Allocation ...334

4.4 Staff Experience ...336

4.5 Cost and Schedule Variance ..338

4.6 Resource Utilization...340

4.7 Software Size..342

4.8 Requirements Stability ..344

4.9 Response Time...346

4.10 Problem Report Status ..348

4.11 Problem Report Aging ...352

Part 5 - Measurement Analysis and Indicator Examples

Page 290

4.12 Defect Density.. 354

4.13 Software Complexity ... 356

4.14 Software Process Maturity.. 358

4.15 Software Productivity.. 360

4.16 Rework Effort ... 362

4.17 Software Origin.. 364

4.18 Design Completion .. 366

4.19 Test Completion... 368

4.20 Readiness for Delivery .. 372

4.21 Maintenance Status ... 376

4.22 Maintainability.. 380

Part 5 - Measurement Analysis and Indicator Examples

Page 291

CHAPTER 1 - MEASUREMENT INDICATOR EXAMPLE DESCRIPTION

Part 5 contains examples of measurement indicators used to analyze the six common

software issues described in this Guide. These are examples only and do not represent a
definitive set that should be applied to all projects. Examples are presented using a two-

page format which contains: 1) a general description, 2) a visual representation of the

indicator produced from detailed measurement data, and 3) a brief explanation of how the

indicator was generated and how the corresponding issue might be analyzed. Many of

the examples include more than one graph. Each indicator description contains the

following information:

• Indicator name - The name reflects the measurement data used, the issue being

analyzed, and the information desired.

• Issue - Which of the six PSM common software issues is being analyzed.

• Category - PSM Measurement Category, which best matches the information

desired.

• Measure - Name of the measure(s) selected for use in this example.

• Description - A description of the selected indicator, including its purpose and the

questions it can help answer.

• Example graph - A description of the sample graph or table provided, including

how it was produced. Some examples contain an analysis of the indicator at more

than one level of detail and, therefore, contain more than one graph.

• Analysis approach - A description of how the indicator depicted in the example

might be analyzed to obtain information about the corresponding issue. This analysis

focuses on estimation, feasibility analysis, or performance analysis, depending on the

analysis technique specified.

• Additional analysis - A description of additional analysis that might be performed to

compare this indicator to others.

• Lessons learned - Helpful information such as the suggested reporting level, how

much variance is typically considered acceptable, and which factors often interfere

with the analysis of this indicator.

The indicator examples are organized into separate chapters for each type of analysis:

estimation, feasibility, and performance.

Part 5 - Measurement Analysis and Indicator Examples

Page 292

Part 5 - Measurement Analysis and Indicator Examples

Page 293

CHAPTER 2 - ESTIMATION

Estimation produces projections of the software size, effort, and schedule required
completing a project. Estimates of quality, measured by defects or failures may also
be generated. Special case measurement indicators that relate two different measures
and help to estimate one based on the other are called estimators.

The following estimation examples are included:

Issue Indicator Section

Schedule and Progress

Resources and Cost

Effort-Schedule Tradeoff 2.1

Resources and Cost

Growth and Stability

Size-Effort Estimating

Relationship

2.2

Schedule and Progress

Growth and Stability

Size-Schedule Estimating

Relationship

2.3

Product Quality Problem Trend 2.4

Part 5 - Measurement Analysis and Indicator Examples

Page 294

2.1 Effort-Schedule Tradeoff

Issue Schedule and Progress
Resources and Cost

Category Milestone Performance
Personnel

Measure Milestone Dates
Effort

Description For a given size project, this indicator shows the tradeoff between effort and
schedule. As the level of staffing increases, the schedule is shortened and costs
increase dramatically. This indicator can be used to estimate the additional cost of
trying to shorten schedule.

Example
Graph

The graph shows various effort-schedule combinations as the rate and peak level
of staffing is varied.

Estimation
Analysis

Figure 5.2-1 was generated by a commercial software cost model (SLIM) and was
adapted from Putnam and Myers, 1996. It provides a clear graphical
representation of the tradeoffs between effort and schedule to develop a specific
software product under several plans. The schedule for each plan is plotted on the
x-axis in Figure 5.2-1. The values on the y-axis represent the number of persons
who would be assigned to the project in each schedule month. The curves that are
plotted in the figure illustrate each of the possible effort-schedule tradeoff plans.
These curves show that costs increase in a non-linear fashion as attempts are made
to shorten schedule by adding staff. For example, as shown in the top curve, the
plan with the shortest time and highest cost to develop the software would require
8 months, at a cost of $3,000,000. The curve associated with this plan shows the
number of persons who should be assigned to the project in each schedule month.
Alternatively, the plan with the longest time and lowest cost to develop the
software would require 13 months, at a cost of $416,000. Ideally, the exact nature
of an effort-schedule relationship should be determined from local historical data.

Additional
Analyses

The graph shows that a small team over an extended period of time is the
appropriate strategy to minimize costs. To minimize development time, the
appropriate strategy is to increase staffing and be prepared for dramatically
increased costs.

Lessons
Learned

Projects are often subjected to cost and schedule constraints that are established
outside the project. Costs may be constrained by Congressional or corporate
funding. Schedule may be set by external requirements, such as the date that a
satellite is set to launch the date that a ship will be deployed, or other user needs.
Effort and schedule are highly inter-related so that a change in one measure will
impact the other.

Part 5 - Measurement Analysis and Indicator Examples

Page 295

Effort - Schedule Tradeoff

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13

Months

S
ta

ff

$3 M

$1.7 M

$1.3 M

$ 875 K
$ 623 K

$ 416 K

Project: PSM Data as of 31 Mar 98

Figure 5.2-1

Part 5 - Measurement Analysis and Indicator Examples

Page 296

2.2 Size-Effort Estimating Relationship

Issue Resources and Cost
Growth and Stability

Category Personnel
Product Size and Stability

Measure Effort
Lines of Code

Description This indicator (Putnam, et al., 1992) shows the relationship between product size
(SLOC) and effort (labor hours) for one application domain. This relationship
underlies many software cost models, making estimated size an important input.

Example
Graph

The points on the sample graph represent historical data of size and effort for
completed projects. Note that this relationship is exponential but appears linear
only because both scales are logarithmic. This relationship is far from perfect.
There is a great deal of “noise” or variance in the data that can be used to compute
confidence limits. The graph shows the upper and lower 95% confidence limits,
meaning that 95 out of 100 projects are expected to fall within those bounds.
Parametric software cost models attempt to explain some of the noise through
additional input parameters that reflect project and product attributes.

The “u” represents one data point for a specific project. The comparison of a
project’s planning data with historical data allows an assessment of the feasibility
of the project plan. In the sample case, the project estimate is below the mean
effort for projects of that size, but within the confidence bounds.

Estimation
Analyses

This type of graph shown in Figure 5.2-2 can be used to generate an effort
estimate for a given size by using the mean value as shown by the middle line. A
more conservative estimate would use the range of effort values at the upper 95%
confidence limit. Use of the higher estimate for effort presents less risk to the
project.

Additional
Analyses

This type of indicator can be used to crosscheck effort estimates generated by
other means. If estimated effort falls outside of the upper or lower bound for a
given application domain, the reasons for the deviation should be defined or the
estimate should be adjusted.

Lessons
Learned

Caution must be used to apply data that is obtained from an outside organization.
Size and actual effort expended are related to staff productivity, which can vary
greatly across organizations.

Part 5 - Measurement Analysis and Indicator Examples

Page 297

Size - Effort
Estimating Relationship

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

La
bo

r
H

ou
rs

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project under
consideration

Project: PSM Data as of 31 Mar 98

Figure 5.2-2

Part 5 - Measurement Analysis and Indicator Examples

Page 298

2.3 Size-Schedule Estimating Relationship

Issue Schedule and Progress
Growth and Stability

Category Milestone Performance
Product Size and Stability

Measure Milestone Dates
Lines of Code

Description This indicator (Putnam, et al., 1992) shows the relationship between product size
(SLOC) and schedule (duration in person days) for one application domain.

Example
Graph

The points on the sample graph represent historical data of size and schedule for
completed projects. As in the size-effort estimating relationship (section 2.2), the
relationship between size and schedule is exponential but appears linear because
both scales are logarithmic. The graph also shows the upper and lower 95%
confidence limits. The “u” represents the estimated data point for one project.

Estimation
Analysis

In Figure 5.2-3, the current project data is above the mean effort for projects of
that size, but it is well within the confidence bounds. If the “u” in the size-effort
indicator (Figure 5.2.2) was from the same project, it would present a consistent
picture of the cost-schedule tradeoff shown in section 2.1 (below the average for
effort, above average for schedule).

This type of graph can also be used to generate a schedule estimate by taking the
mean value for a given size, as shown by the middle line. The range defined by
the upper 95% confidence limit should be used to be conservative.

Additional
Analyses

This type of indicator can also be used to crosscheck estimates generated by other
means. If the estimated schedule falls outside of the upper or lower bound for a
given application domain, the reasons for the deviation should be defined or the
estimate should be adjusted.

Lessons
Learned

Data obtained from outside organizations should be applied with caution.

Part 5 - Measurement Analysis and Indicator Examples

Page 299

Size - Schedule
Estimating Relationship

0.1

1.0

10.0

100.0

0.1 K 1.0 K 10.0 K 100.0 K 1,000.0 K 10,000.0 K

Source Lines of Code

C
al

en
da

r
M

on
th

s

Lower 95%
Confidence Limit

Upper 95%
Confidence Limit

Project under
consideration

Project: PSM Data as of 31 Mar 98

Figure 5.2-3

Part 5 - Measurement Analysis and Indicator Examples

Page 300

2.4 Problem Trend

Issue Quality

Category Defects

Measure Software Problem Interval

Description This measure shows the trend of software problems encountered over time. It is
used to estimate the number of problems expected to be found in the future.

Example
Graph

The graph shows the number of unique problems discovered per month during
integration and test. The number of problems declines until the start of operational
test, at which point different types of problems are uncovered. The number of
discovered problems declines again until system delivery. The closed circles
represent actuals; the open circles represent estimated values. The solid line is a
result of fitting the data to a curve.

Estimation
Analysis

The type of indicator in Figure 5.2-4 can be used to estimate the number of
remaining problems. This can be used to estimate the problems likely to be
experienced by the user, and to project the workload required making corrections.
These estimates can also be used to help determine readiness for delivery.

Additional
Analyses

Similar indicators can be generated much earlier during software development,
using data from project reviews and inspections.

Lessons
Learned

The rate at which problems are discovered is often determined by the amount of
testing or the number of users. The level of use can introduce additional variation
in the trends that need to be taken into account. For example, the problem
discovery rate may decrease during periods of reduced test activity. This
reduction is because fewer tests are being run, and not because there are fewer
problems in the system.

Part 5 - Measurement Analysis and Indicator Examples

Page 301

Software Problem Trend

0

10

20

30

40

50

60

70

80

90

Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98 Jul 98

Months

P
ro

bl
em

s
D

is
co

ve
re

d

Start of
Integration and Test

Start of
Operational Test

Delivery to
User

Estimated Problems

Project: PSM Data as of 31 Jan 97

Figure 5.2-4

Part 5 - Measurement Analysis and Indicator Examples

Page 302

Part 5 - Measurement Analysis and Indicator Examples

Page 303

CHAPTER 3 - FEASIBILITY ANALYSIS

Feasibility analysis is directed towards the evaluation of project planning data.
For initial planning data, the analysis is focused on whether plans are
technically realistic and consistent with respect to other plans. Analysis of
replanning data also considers whether the any replan is realistic, based on
actual performance to date.

Single Indicator Analysis

The following examples are included:

Issue Indicator Section

Schedule and Progress Milestone Schedule 3.1

Design Progress 3.2

Incremental Build Content 3.3

Resources and Cost Effort Allocation 3.4

Cost Profile 3.5

Growth and Stability Software Size 3.6

Response Time 3.7

Development Performance Software Productivity 3.8

Technical Adequacy Software Origin 3.9

Integrated Indicator Analysis

The following examples are is also included:

Analysis Focus Indicators Section
Feasibility of Plans Feasibility of Plans 3.10

Part 5 - Measurement Analysis and Indicator Examples

Page 304

3.1 Milestone Schedule

Issue Schedule and Progress

Category Milestone Performance

Measure Milestone Dates

Description This indicator helps evaluate whether sufficient schedule is available to complete
development activities. This graph also can be used for assessment of the impact of
potential or actual schedule slips on future activities and milestones.

Example
Graph

A Gantt chart (Figure 5.3-1) was used to present the information. Each major
activity is included, with each plan represented by a bar.

Feasibility
Analysis

Each activity’s planned start and end date should be evaluated for reasonableness,
as should the overall duration of each activity. The evaluation should include an
assessment of whether all activities are included, what activities affect the critical
path, and the amount of overlap between various activities. The analysis of
planning changes should include an assessment of the extent of changes and the
impact on future activities.

Figure 5.3-1 shows only minor changes in the initial activities of requirements and
design. However, implementation has slipped several months, and test and
evaluation has slipped by over a year. A realistic replan should be generated.

Additional
Analyses

The total schedule should be checked to ensure that is reasonable, given the
amount of code that must be produced and the effort planned.

Lessons
Learned

 Slips in activities and milestones on the critical path are of greatest concern, due
to the ripple effect in the later parts of the schedule. The graph should contain a
sufficient level of detail to monitor progress. If multiple builds or releases are
planned, separate activities and milestones should be defined for each build or
release.

Part 5 - Measurement Analysis and Indicator Examples

Page 305

Software Development Milestone Schedule

Activity
Requirements

 Plan 1

 Plan 2

 Plan 3

Design

 Plan 1

 Plan 2

 Plan 3

Implementation

 Plan 1

 Plan 2

 Plan 3

 Plan 4

Integration and Test

 Plan 1

 Plan 2

 Plan 3

 Plan 4

5/16 11/10

5/16 10/17

5/16 10/17

9/27 4/27

1/17 5/6

1/17 6/23

6/17 9/18

12/16 12/29

12/16 3/9

12/16 3/2

3/13 1/20

1/1 10/29

1/1 3/10

1/1 4/13

1996 1997 1998 1999 2000

Program: PSM Data as of 15 Oct 99

Figure 5.3-1

Part 5 - Measurement Analysis and Indicator Examples

Page 306

3.2 Design Progress

Issue Schedule and Progress

Category Work Unit Progress

Measure Component Status

Description This indicator helps identify or predict schedule slips and uncover design size
growth by comparing the planned design completion rates from various plans.

Example
Graph

Overall design progress (Figure 5.3-2) was graphed using a line chart containing
cumulative measures for the original plan, the recent replan, and the actual units
designed to date. Each point is calculated by adding the number of units allocated
for the reporting period to their respective cumulative totals from the last reporting
period.

Feasibility
Analysis

Initial design plans and any replans should be checked to ensure that they reflect
the total number of units estimated for the system. A slope that is unusually steep
may indicate a risk.

Figure 5.3-2 indicates that design progress was behind the original Plan 1 at the
end of August. This resulted in a replan (Plan 2) of the overall activity. However,
Plan 2 did not change the final completion date, but only changed the rate at which
units would be completed. This does not appear to be realistic given the actual
trend of units completing design.

Additional
Analyses

The schedule for the design activity must correspond to the dates for units
completing design. In addition, the planned rate of design completion must be
judged in light of project realities, such as staffing levels, experience, and
requirement volatility.

Lessons
Learned

Major changes in the rate of planned progress should be carefully evaluated. Once
an actual trend line is established, it is difficult to modify the rate of completion.

Part 5 - Measurement Analysis and Indicator Examples

Page 307

Design Progress

0

50

100

150

200

250

300

350

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Plan 1
Plan 2
Actual

Project: PSM Data as of 31 Dec 97

Figure 5.3-2

Part 5 - Measurement Analysis and Indicator Examples

Page 308

3.3 Incremental Build Content

Issue Schedule and Progress

Category Incremental Capability

Measure Build Content - Component

Description When multiple builds or releases are planned, this indicator helps determine if a
realistic build schedule has been established. During re-plans, updated build plans
are reviewed for feasibility.

Example
Graph

A bar chart (Figure 5.3-3) was produced by summarizing the number of software
units for each build that were 1) originally planned for delivery, 2) planned for
delivery in a second plan, and 3) planned for delivery in the latest plan.

Feasibility
Analysis

The distribution of units across incremental builds should be evaluated to ensure it
is reasonable, considering overlapping work effort and the likelihood of slippage.
The sum of each build’s planned number of units should be equal to the total
number of units scheduled for the final release.

Figure 5.3-3 shows that units in both Builds 1 and 2 were deferred to Build 3,
increasing its size by over 30%. Build 3 is now significantly larger than either of
the previous builds. It is likely that these deferments will result in delays in
implementation and testing, and may impact customer delivery milestones.

Additional
Analyses

Schedule and progress data should be evaluated to assess the impact of deferring
functionality. Effort plans should be compared with the planned schedule to see
whether sufficient resources and time have been allocated for this larger build.

Lessons
Learned

Deferments to later builds without adjustments to the schedule are of greatest
concern. A 5% or greater variance in a single builds, or a 10% variance across
two or more builds should be considered significant.

Part 5 - Measurement Analysis and Indicator Examples

Page 309

Incremental Build Content

0

5

10

15

20

25

30

35

40

Build 1 Build 2 Build 3

N
um

be
r

of
 U

ni
ts

 In
te

gr
at

ed

Plan 1
Plan 2
Plan 3

Data as of 7 Jan 98Project: PSM

Figure 5.3-3

Part 5 - Measurement Analysis and Indicator Examples

Page 310

3.4 Effort Allocation

Issue Resources and Cost

Category Personnel

Measure Effort

Description This indicator is used to assess the adequacy of planned effort and to analyze the
actual allocation of labor to development activities.

Example
Graph

Total software effort was graphed using a line chart (Figure 5.3-4a) that contains
data representing the original plan and the April 1995 replan.

A bar chart (Figure 5.3-4b) was used to obtain a more detailed view of effort
allocation by software activity. This graph represents the April 1995 replan.

Feasibility
Analysis

The indicator is used to evaluate whether the planned effort distribution is
realistic. The replan extended the schedule for several months, but kept the same
amount of total effort (no additional cost incurred).

The distribution of effort between the development activities should also be
checked to ensure that it is realistic. An adequate level of effort must be allocated
to early requirements and design activities and to later testing activities, as these
areas are often underestimated. Figure 5.3-4b is an indicator for the distribution of
labor.

Additional
Analyses

The distribution of effort must be checked against scheduled activities to ensure
that sufficient resources are available during times when multiple activities are
occurring. Sufficient effort must be planned to develop the planned amount of
code.

Lessons
Learned

The rate of change in effort data must be monitored, since large numbers of people
normally cannot be effectively added within a short period. Large overruns during
integration and test may indicate quality problems with the code and significant
defects that may delay completion.

Part 5 - Measurement Analysis and Indicator Examples

Page 311

Effort Allocation

0

20

40

60

80

100

120

140

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

S
ta

ff
M

on
th

s Plan 1
Plan 2
Actual

Data as of 30 Jun 97Project: PSM

Figure 5.3-4a

Effort Allocation
By Software Activity

0

100

200

300

400

500

600

Requirements
Analysis

Design Implementation Integration
and Test

S
ta

ff
M

on
th

s

Data as of 30 Jun 97Project: PSM

Figure 5.3-4b

Part 5 - Measurement Analysis and Indicator Examples

Page 312

3.5 Cost Profile

Issue Resources and Cost

Category Financial Performance

Measure Cost

Description This indicator is used to evaluate planned costs and to assess whether a project can
be completed within cost constraints.

Example
Graph

A line chart (Figure 5.3-5) is used to present the cost information. In addition to
cumulative plan cost, the graph also contains the budgeted cost (the top static
line), and the planned funding increments. The planned funding shows when the
aquirer expects to provide funds to the developer.

Feasibility
Analysis

The planned cost must be realistic over the period of performance. Large changes
in the rate per period should be evaluated for feasibility. Figure 5.3-5 shows a
relatively consistent planned expenditure rate.

The funding profile should be evaluated to ensure that adequate funding is
available to meet planned costs. Figure 5.3-5 shows a funding problem in March
1997. Some development activities may have to be delayed until funding is
provided.

Additional
Analyses

Cost should be compared to effort profiles to make sure they are coordinated.

Lessons
Learned

Since software development is a labor-intensive activity, this data should track
closely to effort data.

Part 5 - Measurement Analysis and Indicator Examples

Page 313

Cost Profile

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

D
ol

la
rs

 (
In

 T
ho

us
an

ds
)

Plan

Funding
Plan

Budget

Data as of 31 Dec 97Project: PSM

Figure 5.3-5

Part 5 - Measurement Analysis and Indicator Examples

Page 314

3.6 Software Size

Issue Growth and Stability

Category Product Size and Stability

Measure Lines of Code

Description This indicator provides an estimate of software size, which is a major variable
used to estimate software development effort and schedule. Unplanned additions
and changes to the code can adversely influence schedules and costs.

Example
Graph

A bar chart (Figure 5.3-6) shows the size breakdown by CI, and reflects the
changes due to replans.

Feasibility
Analysis

Total estimated lines of code should be compared with other similar projects.
Figure 5.3-6 shows increases in size due to replans. Most of the estimated size
increase was attributable to CI C. Additional effort and schedule may be required
to complete the development activity for this CI.

Additional
Analyses

Size estimates should be monitored over time with the staffing profiles for the
development team. Sufficient staff should be assigned during each time period to
complete coding assignments. The analysis should consider rework, concurrent
assignments, non-project time, and programmer productivity.

Lessons
Learned

It is not unusual for moderate increases to occur in total software size over the
original estimates. Increases of up to 20% are common. Larger increases in
estimates or actuals should be investigated.

Part 5 - Measurement Analysis and Indicator Examples

Page 315

Software Size
By CI

0

2,000

4,000

6,000

8,000

10,000

CI A CI B CI C

S
ou

rc
e

Li
ne

s
of

 C
od

e

Plan 1
Plan 2
Plan 3

Data as of 31 Jan 98Project: PSM

Figure 5.3-6

Part 5 - Measurement Analysis and Indicator Examples

Page 316

3.7 Response Time

Issue Growth and Stability

Category Target Computer Resource Utilization

Measure Response Time

Description This indicator measures whether system requirements for standard on-line
functions are reasonable by comparing historical actual response times to the
required response times, for similar functions.

Example
Graph

A bar chart (Figure 5.3-7) was used to compare the historical data against a
contract-specified on-line response time requirement. Data from three previous
systems was used as the baseline for comparison to the new contract requirement.

Feasibility
Analysis

Figure 5.3-7 shows that the contract requirements are within the range of what has
been achieved on three similar projects. The requirement appears achievable,
assuming that the historical systems had similar functionality.

 Add
Additional
Analyses

The similarity of hardware, communications, and database technology should be
checked to ensure that historical data is comparable.

Lessons
Learned

Large decreases in response time between systems should not be expected unless
technology or functionality has changed significantly. Projected performance for
the new system can be determined by using modeling and simulation techniques.

Part 5 - Measurement Analysis and Indicator Examples

Page 317

Response Time
On-Line Functions

0

10

20

Query

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

Program 1
Program 2
Program 3

Data as of 31 Mar 98Project: PSM

Requirement

Figure 5.3-7

Part 5 - Measurement Analysis and Indicator Examples

Page 318

3.8 Software Productivity

Issue Development Performance

Category Productivity

Measure Product Size/Effort Ratio

Description These graphs show the amount of work produced relative to the effort expended.
If an actual rate can be established early in a project or can be predicted from
historical data, the data can be used to estimate the remaining effort needed to
complete a project.

Example
Graph

A bar chart (Figure 5.3-8a) was used to evaluate the feasibility of two alternative
bidders on a contract. For each developer, data from three historical projects was
provided, along with the proposal estimate.

A second bar chart (Figure 5.3-8b) was used to evaluate replans. The project’s
planned productivity rates were compared to the current actual rate and to the
proposed alternative replan rates.

Feasibility
Analysis

Planned productivity rates should be compared to past projects with similar
characteristics, such as tools, methodology, staff skills, and programming
language. Figure 5.3-8a compares two bidders for a contract. The successful
bidder had an estimate that appeared reasonable. All of the historical productivity
data for this bidder was in a relatively small range and the proposal relied on only
a modest increase in this rate. In contrast, the unsuccessful bidder had historical
data that varied widely. In addition, the proposed productivity for this bidder was
significantly higher than had been achieved on any of the historical projects,
making the estimate appear unrealistic.

Figure 5.3-8b was used to evaluate the feasibility of two replan options. The
indicator shows that actual productivity on Build 1 is significantly lower than
planned. Two alternative replans were considered. Option 1 proposes increasing
productivity by the end of Build 1 slightly and substantially increasing it for Build
2. Option 2 assumes the productivity rate throughout the remainder of the project
will be similar to what has already been achieved and a new Build 3 is added to
complete production. Option 2 appears to be a more realistic alternative unless
major changes in the process occur.

Additional
Analyses

Consider issues such as learning curve, requirements volatility, and expected staff
turnover when evaluating the feasibility of a chosen rate.

Lessons
Learned

The underlying reasons for significant changes in productivity rates during a
project should be determined. Unplanned rework is a frequent cause of low
productivity. Once established, it is hard to change productivity on an existing
project.

Part 5 - Measurement Analysis and Indicator Examples

Page 319

Software Productivity
Historical by Bidder

0

20

40

60

80

100

120

140

160

180

200

Successful
Bidder

Unsuccessful
Bidder

S
LO

C
 p

er
 S

ta
ff

M
on

th

Historical - 1
Historical - 2
Historical - 3
Proposal

Data as of 31 Mar 98Project: PSM

Figure 5.3-8a

Software Productivity

0

20

40

60

80

100

120

140

160

180

Proposal Actuals
to Date

Replan
Option 1
(2 Builds)

Replan
Option 2

(Add Build 3)

S
LO

C
 p

er
 S

ta
ff

M
on

th

Build 1
Build 2
Build 3

Project: PSM Data as of 31 Dec 97

Figure 5.3-8b

Part 5 - Measurement Analysis and Indicator Examples

Page 320

3.9 Software Origin

Issue Technical Adequacy

Category Technology Impacts

Measure Lines of Code

Description This indicator shows the amount of code by source (new, modified, reused,
COTS) on a project.

Example
Graph

A stacked bar chart (Figure 5.3-9) was used to show the amount and distribution
of developed and non-developed code. The non-developed portion of the bar is an
estimate of the amount of code that would have to be developed if the COTS
software was not used. It is not an actual estimate of the size of the COTS
software itself. The size of COTS software is often unknown, and only a small
portion of the available COTS software may be used.

Feasibility
Analysis

The distribution of developed to non-developed code should be reviewed to assess
whether expectations for the amount of code that will not be developed is realistic.
The amount of new code needed to integrate COTS and non-COTS software
should also be considered.

Figure 5.3-9 shows three planned size estimates. Plan 1 shows an almost 50-50
split between non-developed and new code for the project. In plan 2, this ratio is
revised and development of more new code is planned. Plan 3 shows an
additional increase in new code, resulting in an overall size increase. Plan 3 only
has 25% of the final product comprised of non-developed code. The increased
amount of code to be developed will most likely result in schedule delays and
effort increases.

Additional
Analyses

The analysis should check that additional time and effort have been allocated to
allow time for the additional code development that is required.

Lessons
Learned

Changes in assumptions concerning the use of COTS software or the amount of
code that can be reused, can significantly impact project schedules and budgets.
Plans should be re-evaluated when this occurs.

Part 5 - Measurement Analysis and Indicator Examples

Page 321

Software Origin
Developed Versus Non-Developed Code

0

500

1,000

1,500

2,000

2,500

Plan 1 Plan 2 Plan 3

S
ou

rc
e

Li
ne

s
of

 C
od

e
(I

n
T

ho
us

an
ds

)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

Data as of 7 Jan 98Project: PSM

Figure 5.3-9

Part 5 - Measurement Analysis and Indicator Examples

Page 322

3.10 Feasibility of Plans

Issue Schedule and Progress
Resources and Cost
Growth and Stability

Category Milestone Performance
Personnel
Work Unit Progress
Functional Size and Stability

Measure Milestone Dates
Effort
Component Status
Requirements

Description Because schedule, effort, and functionality are inter-related, assumptions and plans
that are associated with these attributes must be evaluated together, not just
individually. For example, the question of whether or not a given schedule is
feasible cannot be answered without consideration of the product size and the
planned effort. Figure 5.3-10 contains a set of plans that should be examined
together in evaluating their feasibility.

Example
Graph

Figure 5.3-10a shows the planned milestone dates for major project activities.
Figure 5.3-10b shows the planned staffing level over time for both the prime and
the subcontractor. Note the flat staffing profile for the prime contractor. In
general, a more effective staffing profile would reflect a more gradual buildup
during requirement analysis and the early stages of design.

Figure 5.3-10c shows the planned work unit progress for code and unit test. Note
the rapid buildup toward the end of this activity. This requires an explanation of
the basis for this rapid progress. Figure 5.3-10d shows the planned growth in
requirements. The assumption is that there will be a steep growth followed by
absolute stability. The assumption of zero requirement growth has to be
questioned.

Feasibility
Analysis

In addition to analyzing the feasibility of individual plans, information can be
obtained by comparing the graphs to each other to assess their consistency.
Review of the staffing plan identifies even more risk in the planned code and unit
test progress. Note that the subcontractor only provides staff through May 1997
when code and unit test for their units is completed. The subcontractor will be
unavailable to address any problems and defects that are found during integration
and test. Note also that a rapid increase in code and unit test progress is planned
after May 1997. At this time, the subcontractor is gone and the prime staffing
remains constant.

By comparing the planned milestone dates with the planned requirement growth,
another inconsistency is revealed. According to the milestone dates, requirement
analysis will be completed by May 1996. However, the project plans assume
continual requirements growth until after this point.

Part 5 - Measurement Analysis and Indicator Examples

Page 323

Additional
Analyses

The next step is to refine the plans for schedule, effort, and requirement growth to
produce a set that is realistic and internally consistent.

Lessons
Learned

Once the project is underway, changes in any of the plans are likely to require
modification of other plans. For example, if requirement growth continues past
October 1996, replanning for the other three measures will likely be required.

Part 5 - Measurement Analysis and Indicator Examples

Page 324

P
ar

t 5
 -

 M
ea

su
re

m
en

t A
na

ly
si

s
an

d
In

di
ca

to
r

E
xa

m
pl

es

P
ag

e
32

5

F
ea

si
bi

lit
y

of
 P

la
ns

P
la

nn
ed

 S
ch

ed
ul

e

A
ct

iv
ity

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

P
re

lim
in

ar
y

D
es

ig
n

T
es

t P
la

nn
in

g

D
et

ai
le

d
de

si
gn

U
pg

ra
de

 D
B

M
S

C
od

e
an

d
U

ni
t T

es
t

In
te

gr
at

io
n

T
es

t

S
ys

te
m

 T
es

t

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

19
98

19
99

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
8

F
ig

 5
.3

-1
0a

S
ta

ffi
ng

02468101214161820 Ja
n

98
Ju

l 9
8

Ja
n

99
Ju

l 9
9

Ja
n

00
Ju

l 0
0

Ja
n

01

D
at

e

Number of Full-Time Equivalents

P
rim

e

S
ub

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
8

F
ig

 5
.3

-1
0b

C
od

e
an

d
U

ni
t T

es
t P

ro
gr

es
s

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0 Ju

l 9
8

O
ct

 9
8

Ja
n

99
A

pr
 9

9
Ju

l 9
9

O
ct

 9
9

Ja
n

00

D
at

e

Number of Units
Completing Code and UT

P
la

n

D
at

a
as

 o
f 3

1
M

ar
 9

8
P

ro
je

ct
: P

S
M

F
ig

 5
.3

-1
0c

R
eq

ui
re

m
en

ts
 G

ro
w

th

050

10
0

15
0

20
0

25
0

30
0 Ja

n
98

Ju
l 9

8
Ja

n
99

Ju
l 9

9
Ja

n
00

Ju
l 0

0
Ja

n
01

D
at

e

Number of Requirements

P
la

n

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
8

F
ig

ur
e

5.
3-

10
d

Part 5 - Measurement Analysis and Indicator Examples

Page 326

Part 5 - Measurement Analysis and Indicator Examples

Page 327

CHAPTER 4 - PERFORMANCE

Performance analysis deals with actual adherence to plans, estimates, and assumptions

associated with an issue.

Single Indicator Analysis

The following examples are included:

Issue Indicator Section

Schedule and Progress Milestone Progress 4.1

Design Progress 4.2

Resources and Cost Effort Allocation 4.3

Staff Experience 4.4

Cost and Schedule Variance 4.5

Resource Utilization 4.6

Growth and Stability Software Size 4.7

Requirements Stability 4.8

Response Time 4.9

Product Quality Problem Report Status 4.10

Problem Report Aging 4.11

Defect Density 4.12

Software Complexity 4.13

Development Performance Software Process Maturity 4.14

Software Productivity 4.15

Rework Effort 4.16

Technical Adequacy Software Origin 4.17

Part 5 - Measurement Analysis and Indicator Examples

Page 328

Part 5 - Measurement Analysis and Indicator Examples

Page 329

Integrated Indicator Analysis

The following examples are included:

Analysis Focus Indicators Section
Design Completion Design Progress

Staff Level

4.18

Test Completion Implementation Progress

Test Progress

Problem Report Status

Staff Level

4.19

Readiness for Delivery Test Progress

Problem Report Status

Software Reliability

CPU Utilization

4.20

Maintenance Status Requirements Stability

Change Requests
Implemented

Software Reliability

Milestone Progress

4.21

Maintainability Defect Density

Complexity

High Complexity

4.22

Part 5 - Measurement Analysis and Indicator Examples

Page 330

4.1 Milestone Progress

Issue Schedule and Progress

Category Milestone Performance

Measure Milestone Dates

Description This indicator helps identify the current status of major project events, and allows
assessment of the impact of potential or actual schedule slips on future activities
and milestones.

Example
Graph

A Gantt chart (Figure 5.4-1) was used to present the information. Milestone start
and end dates were used to produce bars for major activities. Planned and actual
dates were provided for each of four maintenance releases.

Performance
Analysis

The Gantt chart shows that the first three releases were completed, while Release
4 is still in progress. Both Releases 1 and 2 were completed late. Release 4 is
currently projected to be completed late as well. For maintenance releases, late
changes in requirements often impact schedule.

Additional
Analyses

Further analysis of staffing levels, work unit progress, and defect rates should help
uncover the reasons for any schedule slips. The impact of the schedule slips must
be evaluated in light of project priorities and constraints.

Lessons
Learned

Slips in activities and milestones on the critical path are of greatest concern, due to
the ripple effect in the later parts of the schedule. The graph should contain a
sufficient level of detail to monitor progress. If multiple builds or releases are
planned, separate activities and milestones should be defined for each build or
release.

Part 5 - Measurement Analysis and Indicator Examples

Page 331

Milestone Progress
Maintenance Activities

Activity
Release 1

 Plan

 Actual

Release 2

 Plan

 Actual

Release 3

 Plan

 Actual

Release 4

 Plan

 Actual

1/10 2/14

1/10 2/21

2/17 4/18

2/25 5/12

4/21 7/10

5/13 7/8

7/10 10/10

7/10 11/14

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1997

Project: PSM Data as of 15 Oct 97

Figure 5.4-1

Part 5 - Measurement Analysis and Indicator Examples

Page 332

4.2 Design Progress

Issue Schedule and Progress

Category Work Unit Progress

Measure Component Status

Description This indicator helps identify or predict schedule slips by comparing the number of
units completing design to the number of units scheduled for design completion
over time. These graphs can also be used to identify design size growth.

Example
Graph

Overall design progress (Figure 5.4-2a) was graphed using a line chart containing
cumulative measures for the original plan, the recent replan, and the actual units
designed to date. Each point is calculated by adding the number of units allocated
for the reporting period to their respective cumulative totals from the last reporting
period.

A bar chart (Figure 5.4-2b) was used to perform a more detailed analysis of design
progress by CI. The second bar in each series represents the number of units that
should be completed as of the reporting dates, and provides the most meaningful
comparison against actual progress.

Performance
Analysis

Figure 5.4-2a indicates that design progress was behind the original plan at the end
of December, resulting in a replan of the overall activity. Actual design progress
has remained fairly close to the new plan. The plan line, however, requires a
significant increase in the completion rate over the next few months. This is an
area of concern.

Further analysis at the CI level (Figure 5.4-2b) reveals that less than one third of
the units planned for CI B have completed design. Progress on the units for CI A
and C is close to plan, and not a concern.

Add
Additional
Analyses

Additional analyses of CI B’s staffing and experience levels, rework effort, and
changing requirements should help identify the cause of this deviation.

Lessons
Learned

Major changes in the rate of progress should be investigated. Once an actual trend
line is established, it is difficult to modify the rate of completion. A 10%
cumulative, or 20% per period, actual deviation from the plan should be
considered significant.

Part 5 - Measurement Analysis and Indicator Examples

Page 333

Design Progress

0

50

100

150

200

250

300

350

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98 Jan 99

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Plan 1
Plan 2
Actual

Project: PSM Data as of 31 Dec 97

Figure 5.4-2a

Design Progress

0

20

40

60

80

100

120

CI A CI B CI C

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Total
Plan
Plan
to Date
Actual

Data as of 31 Dec 97Project: PSM

Figure 5.4-2b

Part 5 - Measurement Analysis and Indicator Examples

Page 334

4.3 Effort Allocation

Issue Resources and Cost

Category Personnel

Measure Effort

Description This indicator is used to assess the adequacy of planned effort and analyze the
actual allocation of labor to development activities.

Example
Graph

Total software effort was graphed using a line chart (Figure 5.4-3a) containing
measures from the original plan, the April 1995 replan, and actual staff months
expended to date.

A bar chart (Figure 5.4-3b) was used to obtain a more detailed view of effort
allocation by software activity. The current plan for each activity and the
associated actual data was graphed as of the last reporting period.

Performance
Analysis

Figure 5.4-3a shows that, initially, actual effort was below the original plan for
several months. The developer had problems staffing the project due to delays in
another project from which personnel were due to transfer. As the replan was
implemented, actuals matched the new plan for several months, but then exceeded
it.

To assess the causes of this overrun, Figure 5.4-3b was drawn. This showed that
additional effort was expended during software design. Due to the delays in
design, less effort has been expended than planned for implementation and
integration and test.

Add
Additional
Analyses

Further analysis of staffing and experience levels may indicate that the effort
overrun was due to the developer’s inexperience with the domain.

Lessons
Learned

The rate of changes in effort data should be monitored, since large numbers of
people usually cannot be effectively added within a short period.

Large overruns during integration and test may indicate quality problems with the
code and significant defects that may delay completion.

Part 5 - Measurement Analysis and Indicator Examples

Page 335

Effort Allocation

0

20

40

60

80

100

120

140

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98

S
ta

ff
M

on
th

s Plan 1
Plan 2
Actual

Data as of 31 Dec 97Project: PSM

Figure 5.4-3a

Effort Allocation
By Software Activity

0

100

200

300

400

500

600

Requirements
Analysis

Design Implementation Integration
and Test

S
ta

ff
M

on
th

s

Plan
Actual

Project: PSM Data as of 31 Dec 97

Figure 5.4-3b

Part 5 - Measurement Analysis and Indicator Examples

Page 336

4.4 Staff Experience

Issue Resources and Cost

Category Personnel

Measure Staff Experience

Description This indicator is used to assess whether the personnel assigned to the project
possess the domain experience necessary to develop a system that meets customer
needs. The graph compares the development staff’s years of real-time distributed
systems experience to contract requirements.

Example
Graph

Both sets of bars in the histogram (Figure 5.4-4) were produced by sorting the
development staff’s experience by the real-time distributed systems experience,
and then summing the number of staff members in each of six experience
categories. This produced a distribution of experience levels that could be charted
and compared to contract requirements. Since contract requirements specify an
average number of years of real-time distributed systems experience (3 years), the
staff’s average at the current time was also calculated and displayed on the graph.

Performance
Analysis

Figure 5.4-4 shows that the development organization proposed and started the
project with a staff average of 3.43 years of real-time distributed systems
experience. In order to further investigate recent schedule slippage and low
productivity, updated staff experience data was requested. The new data reveals
that, while staff size has remained constant in spite of turnover, the experience
levels of replacement staff have dropped. The average experience is now only
2.43 years. Additional analysis should be performed of skill requirements and
staff allocations for the remaining tasks.

Add
Additional
Analyses

The analysis should check for a correlation between experience levels and
schedule slips or productivity shortfalls.

Lessons
Learned

Analysis of staff experience is usually only performed at major milestones on
large projects, unless other analyses point to a staffing problem. Data on years of
experience should be kept up to date. Only that experience obtained on the current
project should be considered when interim analyses are performed. Evaluate staff
experience data with respect to project performance. There is no guarantee that
the original requirements are always valid.

Part 5 - Measurement Analysis and Indicator Examples

Page 337

Staff Experience
Real Time Distributed Software

0

5

10

15

20

< 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5
Years of Experience

N
um

be
r

of
 S

ta
ff

Initial
Current

Contract Requirement - 3 years
Initial - 3.43
Current - 2.43

Data as of 31 Dec 97Project: PSM

Figure 5.4-4

Part 5 - Measurement Analysis and Indicator Examples

Page 338

4.5 Cost and Schedule Variance

Issue Resources and Cost

Category Financial Performance
`
Measure Cost and Schedule Variance

Description Cost and Schedule Variance are integral parts of the earned value management
technique that relates resource planning to technical, cost, and schedule
requirements. The earned value process budgets and schedules all work activities
into time-phased increments that establish a cost and schedule measurement
baseline. An Earned Value Measurement System (EVMS) uses three data
elements: Budgeted Cost of Work Scheduled (BCWS), Budgeted Cost of Work
Performed (BCWP), and Actual Cost of Work Performed (ACWP).

This indicator provides an indication of cost and schedule performance, based on
dollars budgeted per work activity. The data can be aggregated at most WBS
levels to give an indication of Earned Value. The measure addresses the
developer’s ability to complete scheduled activities within the planned schedule
and cost. The measure also indicates the extent that the developer is ahead or
behind in terms of planned funding for work performed.

Example
Graph

The data was graphed using a line chart in Figure 5.4-5. The two values on the
graph, Schedule Variance (SV) and Cost Variance (CV), were calculated as:

SV = BCWP - BCWS
CV = BCWP - ACWP

Negative results are an indication that the project is behind schedule or over
budgeted cost. Positive results indicate the project is ahead of schedule or under
budgeted cost.

Performance
Analysis

Figure 5.4-5 indicates that progress was behind schedule and over cost from early
in the project. Nothing appears to have been done to correct the problem. The
large spikes in schedule variance in August of 1997 should be investigated. It may
be related to either actual performance improvement or to the accounting process.

Add
Additional
Analyses

The underlying cause of the schedule and cost problems may be identified with
further analysis of risks in the software developer’s process, such as the
availability of tools, test facilities, and staff. A replan appears to be necessary.

Lessons
Learned

Large cost or schedule variances should be investigated as soon as possible to
quickly determine the problem that must be addressed. If the financial
performance baseline is replanned, insight into the cause of previous variances can
be lost.

Part 5 - Measurement Analysis and Indicator Examples

Page 339

Schedule Variance
Software

-500

-400

-300

-200

-100

0

100

200

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

V
ar

ia
nc

e
(I

n
T

ho
us

an
ds

 o
f D

ol
la

rs
)

Schedule
Variance
Cost
Variance

Data as of 30 Nov 97Project: PSM

Figure 5.4-5

Part 5 - Measurement Analysis and Indicator Examples

Page 340

4.6 Resource Utilization

Issue Resources and Cost

Category Environment Availability

Measure Resource Utilization

Description This indicator helps determine whether the facilities needed to test the system are
available and being utilized.

Example
Graph

A line chart (Figure 5.4-6) was produced containing four distinct utilization
measures:
1) Planned test facility availability (based on facility predictions);
2) Actual test facility availability to date (based on total time minus actual

maintenance downtime);
3) Scheduled project utilization (based on project schedule); and
4) Actual project utilization to date (based on project hours logged).

Performance
Analysis

Analysis of Figure 5.4-6 shows that testing at the facility started one month late.
Also, a shortfall in the facility’s availability in September appears to have
impacted progress that month. Since the actual hours used to date are significantly
below planned, a replan is probably needed. In addition, the cause of the shortfall
in availability should be investigated to help plan for future availability.

Add
Additional
Analyses

The analysis should consider problems that may arise in scheduling the test
facilities resources if testing is delayed. Also, testing progress to date should be
reviewed in order to gain a more complete analysis of the situation.

Lessons
Learned

Unexpected variances in either resource utilization or availability should be
investigated to help prevent future problems.

Part 5 - Measurement Analysis and Indicator Examples

Page 341

Resource Utilization
Test Facilities

0

20

40

60

80

100

120

140

Jul 97 Aug 97 Sep 97 Oct 97 Nov 97 Dec 97

F
ac

ili
ty

 H
ou

rs

Scheduled
Used

Planned Availability

Actual Availability

Start of Test

Data as of 31 Oct 97Project: PSM

Figure 5.4-6

Part 5 - Measurement Analysis and Indicator Examples

Page 342

4.7 Software Size

Issue Growth and Stability

Category Product Size and Stability

Measure Lines of Code

Description This indicator provides an estimate of software size, which is a major variable
used to estimate software development effort and schedule. The graphs can be
used to monitor progress by comparing the amount of code that is actually
developed and modified over time to plans for code development and growth.
Unplanned additions and changes to code can adversely influence schedules and
costs.

Example
Graph

A line chart (Figure 5.4-7) was used to show changes to the overall software size
estimates and actual size growth as the development proceeds. Size is measured
in source lines of code.

Performance
Analysis

Figure 5.4-7 shows progress in the actual code development. Code production is
approaching the current total size estimate. Progress is proceeding at a fairly
consistent level. The graph also shows moderate growth in the size estimate.

Add
Additional
Analyses

Increases in size counts may be due to requirements changes or inaccurate initial
plans. Whatever the cause, size changes frequently lead to increased schedule and
effort requirements.

Lessons
Learned

It is not unusual for moderate increases to occur in total software size over the
original estimates. Increases of up to 20% are common. Larger increases of
estimates or actuals should be investigated.

Part 5 - Measurement Analysis and Indicator Examples

Page 343

Software Size
Lines of Code

0

5,000

10,000

15,000

20,000

Jan 96 Apr 96 Jul 96 Oct 96 Jan 97 Apr 97 Jul 97 Oct 97

S
ou

rc
e

Li
ne

s
of

 C
od

e

Total
Plan
Actual

Data as of 31 May 97Project: PSM

Figure 5.4-7

Part 5 - Measurement Analysis and Indicator Examples

Page 344

4.8 Requirements Stability

Issue Growth and Stability

Category Functional Size and Stability

Measure Requirements

Description This indicator can be used to monitor changes to requirements throughout a
project, which can serve as a leading indicator of delays, cost increases, and
rework. This indicator also provides an early measure of software size.

Example
Graph

A line chart (Figure 5.4-8a) was used to show two related pieces of information.
The top line shows the trend in the total number of requirements actually defined
to date. Data points past the current date reflects estimates. The current estimate
is for no further requirements changes. The bottom line is the cumulative number
of requirements changes, which includes the total number of requirements added,
changed, or deleted.

A bar chart (Figure 5.4-8b) was also produced to provide more detail about
whether the changes made were additions, modifications, or deletions.

Performance
Analysis

Figure 5.4-8a shows an overall increase in requirements after the March milestone
review, which was expected. An unexpected increase in July can be traced to the
review held in June.

Figure 5.4-8b indicates that the changes were the result of additions and
modifications to approved requirements. The magnitude and timing of these
requirements changes is a cause for concern. Approximately 20% of the total
requirements were affected during this last period and total requirements increased
by over 10%. The timing of the requirements changes is a problem because the
project is well into the design activity.

Add
Additional
Analyses

A high level of requirements volatility may require adjustment to current resource
allocations, effort estimates, budgets, and schedules.

Lessons
Learned

Constantly changing requirements or a large number of additions after
requirements reviews are leading indicators of schedule and budget problems later
in the project. Requirements should be tracked at a more detailed level, such as by
CI.

Part 5 - Measurement Analysis and Indicator Examples

Page 345

Requirements Stability

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Total
Changes

Review 1 Review 2

Data as of 31 Jul 97Project: PSM

Figure 5.4-8a

Requirements Stability
By Type of Change

-20

0

20

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Added
Modified
Deleted

Review 1 Review 2

Data as of 31 Jul 97Project: PSM

Figure 5.4-8b

Part 5 - Measurement Analysis and Indicator Examples

Page 346

4.9 Response Time

Issue Growth and Stability

Category Target Computer Resource Utilization

Measure Response Time

Description This indicator measures whether the system can perform standard on-line
functions in a timely manner by comparing actual response times to the required
response times.

Example
Graph

A bar chart (Figure 5.4-9) was used to compare the results of a series of response
time tests against a contract-specified response time requirement. A series of tests
were executed for selected sets of representative queries and update functions. For
each function, response time measures were collected using an automated tool.
The collected data sets were then averaged. The sample graph shows a series of
three test runs, and indicates the acceptable average response time as a straight
line.

Performance
Analysis

Figure 5.4-9 shows that query-type functions initially exceeded response time
requirements. These functions were subsequently modified to improve
performance and are now within the acceptable range. Update functions initially
performed well, but performance problems were noted in the second test. These
were apparently resolved prior to the third test.

Add
Additional
Analyses

When results are outside the acceptable range, a more detailed analysis by
component or transaction can help pinpoint the problem.

Lessons
Learned

Selecting the functions whose response time will be measured should be based on
specific criteria, such as typical functionality, importance, criticality, or frequency
of occurrence. Also, the form of response-time measures (an average, sample, or
worst case) should be compared to the planned or target figure. Factors that may
influence the validity of actual response time measures include: 1) not simulating
sufficient load on the target machine during the tests, 2) not sampling
representative functions, and 3) using a test database that is smaller than the
operational version. Averaging sometimes can mask a performance problem for a
given function. Review all measured response times individually.

Part 5 - Measurement Analysis and Indicator Examples

Page 347

Response Time
On-Line Functions

0

10

20

Query Update

A
ve

ra
ge

 T
im

e
(S

ec
on

ds
)

First
Test
Second
Test
Third
Test

Contract
Requirement
(10 Sec.)

Data as of 30 Jun 97Project: PSM

Figure 5.4-9

Part 5 - Measurement Analysis and Indicator Examples

Page 348

4.10 Problem Report Status

Issue Product Quality

Category Defects

Measure Problem Reports

Description Problem Status provides information on the number of problem reports found over
time, and their status (discovered, opened, closed). The quantity of problem
reports provides an indication of rework effort and overall product quality.
Closure rates help assess progress by indicating the amount of work or rework
remaining to be done.

Example
Graph

The top line of the line chart in Figure 5.4-10a shows the cumulative number of
problem reports discovered to date. The bottom line shows the number of
problem reports that have been closed. The difference represents the total number
of problem reports that are open. These are graphed, by priority code, using a bar
chart in Figure 5.4-10b.

Figure 5.4-10c contains a breakout of the priority 1 and 2 problem reports by CI.
Figure 5.4-10d contains a breakout of the same priority 1 and 2 problem reports by
the type of problem; performance, logic, interface, or other.

Performance
Analysis

The top line in Figure 5.4-10a indicates that problems have been steadily
discovered over the past year. However, in the past several months the discovery
rate appears to have tapered off. The bottom line of closed problem reports
indicates that closure rate has not kept pace with the discovery rate. Figure 5.4-
10b shows that over half of the remaining open problem reports are priority 1 and
2. This appears to be a major problem and should be investigated further.

A further breakout of these priority 1 and 2 problem reports in Figure 5.4-10c
shows that there is no major concentration of problems across one or two CIs and
the distribution is fairly even. However, the breakout of these problems by type
shows that many of these problems are performance problems. This is a concern,
since performance problems are often difficult to fix and may require redesign of
major pieces of the software.

Add
Additional
Analyses

Test progress should be evaluated to investigate the reason for the recent decrease
of new problem reports. If the reason is that tests are successfully completed and
the project is nearing completion, this is a good sign. If the reason is that testing
has prematurely slowed or halted, this may indicate a significant problem.

Lessons
Learned

The closure rate should remain close to the discovery rate. Large gaps between
the two trend lines indicate that problem correction is being deferred, which could
result in serious schedule, staffing, and cost problems later in the project. A flat
problem report discovery trend line during design, coding, or testing may indicate
that reviews and tests are not being performed, and should be investigated. Open
problem reports should be monitored by priority to insure that high-priority
defects are being fixed first.

Part 5 - Measurement Analysis and Indicator Examples

Page 349

Problem Report Status

0

250

500

750

1,000

1,250

1,500

Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98 Oct 98

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Discovered
Closed

Data as of 31 Jan 98Project: PSM

Figure 5.4-10a

Problem Report Status
Open by Priority

0

20

40

60

80

100

1 2 3 4 5

Priority

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Data as of 31 Jan 98Project: PSM

Figure 5.4-10b

Part 5 - Measurement Analysis and Indicator Examples

Page 350

Part 5 - Measurement Analysis and Indicator Examples

Page 351

Problem Reports Status
Open Priority 1 and 2 By CI

0

5

10

15

20

25

30

35

40

CI A CI B CI C CI D CI E CI F

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Data as of 31 Jan 98Project: PSM

Figure 5.4-10c

Problem Reports Status
Open Priority 1 and 2 By Type

0

10

20

30

40

50

60

70

80

90

Performance Logic Interface Other

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Data as of 31 Jan 98Project: PSM

Figure 5.4-10d

Part 5 - Measurement Analysis and Indicator Examples

Page 352

4.11 Problem Report Aging

Issue Product Quality

Category Defects

Measure Problem Reports

Description This indicator provides information on the number and age of open problem
reports. The age distribution of problem reports helps to assess whether or not
problems are being dealt with in a timely manner.

Example
Graph

The bar chart in Figure 5.4-11 includes all open problem reports, divided into
categories by age. This was done for each problem report by calculating the
number of days that have elapsed since the problem report was initially reported.
Problem reports were then grouped by age categories and graphed.

Performance
Analysis

Figure 5.4-11 shows an average open age of 5.7 weeks for the open problem
reports. This is below the correction target of eight weeks. To understand if the
age of open problem reports is a problem, the analysis must consider the length of
the project, the project’s current status, delivery requirements, and the type and
severity of the defects still open.

Additional
Analyses

Problem Reports that have been open for a long period should be investigated.
Open problem reports may no longer be pertinent, or they may be major problems
that require substantial rework to resolve.

Lessons
Learned

When indicators reveal that problem correction is being deferred, it is likely that
schedules, staffing levels, and budgets will be impacted later in the project.
During testing, test progress is often significantly impacted by deferring correction
of problems. During sustained engineering, the age of problems reported by
customers should be monitored to insure that customer problems are addressed in
a timely manner. Analysis of problem report aging and priority will indicate if
high-priority problems that may be more difficult to resolve are being deferred
longer than low-priority problems.

Part 5 - Measurement Analysis and Indicator Examples

Page 353

Problem Report Aging
Open Problem Reports

0

20

40

60

80

100

< 1 1 - 2 3 - 4 5 - 8 9 - 18 > 18 weeks
Weeks Open

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts
Average = 5.7 weeks
Target < 8 weeks

Data as of 31 Jan 98Project: PSM

Figure 5.4-11

Part 5 - Measurement Analysis and Indicator Examples

Page 354

4.12 Defect Density

Issue Product Quality

Category Defects

Measure Defect Density

Description This indicator is used to assess product quality by normalizing the number of
defects detected in a product by the product’s size. The graphs can be used to
identify which components, subsystems, or CIs have the most quality-related
problems.

Example
Table

A table (Figure 5.4-12) was used to show CI level defect densities for the various
development organizations that participated in a particular project. Defect
densities were calculated by dividing the number of valid defects identified to date
by CI size.

Performance
Analysis

Figure 5.4-12 indicates that the defect densities for CI’s F and G are higher than
the average. This may mean that CI’s F and G will need more attention, such as
additional reviews or testing.

Additional
Analyses

Other project-related factors should be reviewed to gain a better understanding of
the reasons for the high densities. Project-related factors include component
complexity, defect distribution by classification, and organizational factors such as
process maturity.

Lessons
Learned

Defect densities can be generated at lower structure levels to identify specific
components that should be subject to more quality control or should be targeted
for redevelopment. The overall quality of a development project can often be
evaluated by looking at the first 6-12 months of post-release defect densities.
Large numbers of defects reported from the field may be the result of requirements
not achieved, inadequate testing, or poor code quality.

Part 5 - Measurement Analysis and Indicator Examples

Page 355

Defect Density

CI Size
(KSLOC) Defects Defect Density

(Defects/KSLOC)

A 44 48 1.1

B 32 60 1.9

C 36 36 1.0

D 28 33 1.2

E 34 42 1.2

F 15 46 3.1

G 9 30 3.3

Total 198 295 1.5

Project: PSM Data as of 30 June 95

Figure 5.4-12

Part 5 - Measurement Analysis and Indicator Examples

Page 356

4.13 Software Complexity

Issue Product Quality

Category Complexity

Measure Cyclomatic Complexity

Description This indicator measures the number of logic paths in a component. The graphs
can be used to assess the amount of testing required, predict component defect
density, estimate future maintenance effort, or identify the components that should
be considered for redesign or reimplementation. Component complexity measures
are typically compared to a standard or required threshold.

Example
Graph - Table

A bar chart (Figure 5.4-13a) was used to identify the number of components in
each complexity range. Each component within CI A was measured using an
automated code complexity analysis tool. Component complexity values were
separated into six complexity range categories and graphed. The threshold was
also plotted.

The table in Figure 5.4-13b was produced by sorting the raw data by complexity,
and showing only those components whose complexity was higher than the
threshold.

Performance
Analysis

Figure 5.4-13a indicates that most of the components in CI A are less than or
equal to the maximum threshold of ten for component complexity. The
corresponding table in Figure 5.4-13b identifies the specific components that
exceed the complexity threshold. Those CIs with a complexity higher than the
threshold are candidates for redesign or additional review, inspection, and test.

Additional
Analyses

Further analysis of these components may identify one or more causes that
contribute to high complexity. A decision should be made about whether these
components can be rewritten, or whether additional testing should be done.

Lessons
Learned

This measure is not generally available until after a component has been coded,
although it can be calculated from design specifications by analyzing flow charts
or program design language. An automated code analysis tool is needed to
accurately and efficiently produce the measure from code.

Part 5 - Measurement Analysis and Indicator Examples

Page 357

Software Complexity
CI A

0

10

20

30

40

50

60

0 - 5 6 - 10 11 - 15 16 - 20 21 - 25 > 25

Cyclomatic Complexity

N
um

be
r

of
 U

ni
ts

Threshold = 10

Data as of 31 Jan 98Project: PSM

Figure 5.4-13a

Software Complexity
CI A

Units with Complexity > 10

Unit Cyclomatic

Complexity
A1 53
A2 49
A3 32
A4 27
A5 20
A6 19
A7 16
A8 15
A9 15
A10 13
A11 12
A12 11

Project: PSM Data as of 31 Jan 98

Figure 5.4-13b

Part 5 - Measurement Analysis and Indicator Examples

Page 358

4.14 Software Process Maturity

Issue Development Performance

Category Process Maturity

Measure Capability Maturity Model (CMM) Level

Description This indicator is used to gain an understanding of an organization’s relative
software development capability. The CMM-Level measure results from a
software capability assessment of an organization’s software engineering and
project management processes. This indicator is often used to evaluate
development organizations and to select among competing contractors.

Example
Table

The table in Figure 5.4-14 was used to display process maturity results for three
organizations. The score was produced using the formal SEI Software Capability
Evaluation (SCE) assessment procedures, based on the Capability Maturity Model.
Strengths and weaknesses from the assessment findings were also noted in the
table.

Performance
Analysis

Figure 5.4-14 reflects the results of SCE assessments for three organizations. The
rating scale for SCE assessments ranges from one to five, where five indicates an
organization with a high level of software development capability and a mature
software engineering process. Company B has received a slightly higher rating
than companies A and C.

Additional
Analyses

In addition to process maturity, the experience of the developer with similar
projects is important. The analysis should consider the developer’s experience
with projects of similar size within the application domain of interest.

Lessons
Learned

The process maturity score is only as good as the assessment process that
produced it. Consider how long ago the SCE was performed and recognize that a
maturity score is given to the organization, based on a sampling of projects. A
high maturity score does not guarantee a successful development. Project
constraints can significantly influence a developer’s ability to implement the
defined software process as it was assessed.

SCE results should not be used as a specific criteria for source selection. The
assessment results, however, provide significant insight into potential
development organizations.

Part 5 - Measurement Analysis and Indicator Examples

Page 359

Software Process Maturity
SEI Capability Maturity Model

Organization Level Strengths Weaknesses

Target 3

Company A
3 Effective SEPG and task

team structure, with many
improvements implemented.

Mature testing process.

Inadequate tools for the
measurement process and

measures not completely integrated
into project management. Reviews

are informal. Test automation is
new and unproven.

Company B
4 Measurement used in

process to make decisions.
Historical measurements and

lessons learned database
used for project planning.

Good subcontract
management process.

Defect prevention/causal analysis
just getting started. Few advanced

tools used.

Company C
3 Good CM, testing,

inspections with automation
support

Planned measurement data not
established for progress-related

issues; measurements not used to
make project decisions.

Project: PSM Data as of 7 Jan 98

Figure 5.4-14

Part 5 - Measurement Analysis and Indicator Examples

Page 360

4.15 Software Productivity

Issue Development Performance

Category Productivity

Measure Product Size/Effort Ratio

Description This graph indicates the amount of work produced relative to the effort expended.

Example
Graph

The bar chart in Figure 5.4-15 was used to compare a project’s planned
productivity rates with an actual rate to date, and to proposed alternative replan
rates. Each bar was produced by dividing the measure of work effort in staff
months into the product size measure of Source Lines Of Code (SLOC). Software
effort included all requirements analysis, design, implementation, and integration
and test activities.

Performance
Analysis

Figure 5.4-15 shows that two productivity rates were used as the basis for
developing project plans. About 170 SLOC per staff month was planned for Build
1, and 110 was planned for Build 2. However, with Build 1 well under way,
actual productivity is significantly lower than planned, only 100 SLOC per staff
month. Productivity must be increased or substantially more effort and time will
be needed to complete the product.

Additional
Analyses

Further analysis to determine the cause of lower-than-expected productivity
should be performed before deciding on a course of corrective action.

Lessons
Learned

The underlying reasons for significant change in productivity rates during a
project must be identified. Unplanned rework is a frequent cause of low
productivity.

Part 5 - Measurement Analysis and Indicator Examples

Page 361

Software Productivity

0

20

40

60

80

100

120

140

160

180

Proposal Actuals
to Date

Replan
Option 1
(2 Builds)

Replan
Option 2

(Add Build 3)

S
LO

C
 p

er
 S

ta
ff

M
on

th

Build 1
Build 2
Build 3

Project: PSM Data as of 31 Jan 98

Figure 5.4-15

Part 5 - Measurement Analysis and Indicator Examples

Page 362

4.16 Rework Effort

Issue Development Performance

Category Rework

Measure Rework Effort

Description This indicator assesses the amount of effort expended to fix defects. The graphs
can be used to compare the amount of effort attributable to rework against the
budget for rework.

Example
Graph

Two bar charts were produced. The first (Figure 5.4-16a) reports rework as a
separate category of work effort and compares the total amount of planned rework
to the amount of rework actually performed to date. The second chart (Figure 5.4-
16b) was produced by an organization whose time reporting system supports the
collection of rework at the individual activity level (i.e., requirements analysis,
design, implementation, integration, and test). For each chart, the accumulated
number of planned and actual hours is used to draw the bars.

Performance
Analysis

The analysis should consider the level of rework planned as a percentage of
overall effort, and the distribution of planned rework across project phases. These
percentages and distributions should be compared to the actual rework figures
from past projects. Figure 5.4-16a shows that planned rework prior to the
integration and test activity of the project has already been exceeded by over
100%. However, this chart cannot help identify the activities where the rework
occurred.

Figure 5.4-16b can be used when a more sophisticated rework reporting system is
in place. In this chart, rework has been tracked at the software activity level and
only the rework figures are graphed. This example shows that rework during both
requirements analysis and design was much greater than expected.

Additional
Analyses

The reason for the additional rework must be identified. If development or
process problems are identified, evaluate whether fixes are implemented.

Lessons
Learned

Rework occurs during all phases of a project. Taking the extra time to do things
right the first time can reduce overall rework.

Few organizations do a good job of planning for or tracking rework. Most time-
accounting systems do not include separate rework tasks. Instead of reporting
effort, rework can sometimes be tracked using reviews or inspections and problem
report data.

Achieving lower amounts of rework typically requires early defect control
techniques, such as reviews, inspections, and higher levels of process capability.

Part 5 - Measurement Analysis and Indicator Examples

Page 363

Total Rework Effort
Compared to Development Effort

By Activity

0

50

100

150

200

250

300

350

Requirements
Analysis

Design Implementation Integration
and Test

Rework - All
Activities

S
ta

ff
M

on
th

s Plan
to Date
Actual

Data as of 31 Jan 98Project: PSM

Figure 5.4-16a

Rework Effort
By Activity

0

20

40

60

80

100

120

Requirements
Analysis

Design Implementation Integration
and Test

S
ta

ff
M

on
th

s

Plan
to Date
Actual

Data as of 31 Jan 98Project: PSM

Figure 5.4-16b

Part 5 - Measurement Analysis and Indicator Examples

Page 364

4.17 Software Origin

Issue Technical Adequacy

Category Technology Impacts

Measure Lines of Code

Description This indicator shows the amount of code by source (new, modified, COTS,
reused), which can serve as an indicator of the amount of work to be performed on
a project.

Example
Graph

A stacked bar chart (Figure 5.4-17) was used to show the amount and distribution
of developed and non-developed code. The non-developed portion of the bar is an
estimate of the amount of code that would have to be developed if the COTS or
the reused software was not used. This is not an actual estimate of the size of the
COTS software itself, since the size of COTS software is not usually available and
only a small portion of the COTS software may be used.

Performance
Analysis

Figure 5.4-17 shows three planned and one actual size measure. The actual size
measures are close to plan 3 estimates, with only approximately 25% of the final
product comprised of non-developed code. This is a significant change from the
initial plan of almost 50% non-development code. This change will most likely
result in schedule delays and effort increases.

Additional
Analyses

The reason why reuse and COTS code could not be used should be determined.
Were there performance or integration problems with the code? The analysis
should check that additional time and staff have been allocated to allow for the
additional code development that is required

Lessons
Learned

Changes in assumptions concerning the use of COTS and reuse software can
significantly impact project schedules and budgets. Plans should be re-evaluated
when this occurs.

Part 5 - Measurement Analysis and Indicator Examples

Page 365

Software Origin
Developed Versus Non-Developed Code

0

500

1,000

1,500

2,000

2,500

Plan 1 Plan 2 Plan 3 Actual

S
ou

rc
e

Li
ne

s
of

 C
od

e
(I

n
T

ho
us

an
ds

)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

Data as of 31 Jan 98Project: PSM

Figure 5.4-17

Part 5 - Measurement Analysis and Indicator Examples

Page 366

4.18 Design Completion

Issue Schedule and Progress
Resources and Cost

Category Work Unit Progress
Personnel

Measure Component Status
Effort

Description This indicator is used to assess whether the project will complete design activities
as scheduled.

Example
Graph

Four indicators are used to assess completion; two indicators of the number of
units completing design and two indicators of staffing. Figure 5.4-18a is a line
graph that shows the number of units completing design over time, compared to
the plan. Figure 5.4-18b is a breakout of this data, by CI.

Figure 5.4-18c contains the overall staff for the project, as a line graph over time.
Figure 5.4-18d breaks this data out by labor category.

Basic
Analysis

Figure 5.4-18a reveals that actual progress is significantly behind in July. The
plan is for all units to be complete by the end of August. This does not appear
realistic. Figure 5.4-18b shows that all CIs are behind schedule, but CI B is the
worst.

Figure 5.4-18c shows that the project is currently staffed with approximately the
right number of people, according to the plan. However, a drop in staffing
occurred in May. When actual staff is divided into labor categories, Figure 5.4-
18d shows that the design team has fewer senior level staff than planned.

Based on all of this information, the current plan does not appear realistic. A
replan for the remaining project activities is recommended.

Additional
Analyses

Additional analysis on the staff decrease in May showed that there was significant
turnover of experienced personnel that month. Instead of bringing on new
analysts to complete the design, the programmers assigned to join the projects in
July were brought on the project early and assigned to the design tasks. This had a
negative impact. The programmers didn’t have the experience to perform these
tasks, and the remaining designers were delayed bringing the new team members
up to speed.

Lessons
Learned

Adding new people to a late software development usually makes it later.

P
ar

t 5
 -

 M
ea

su
re

m
en

t A
na

ly
si

s
an

d
In

di
ca

to
r

E
xa

m
pl

es

P
ag

e
36

7

D
es

ig
n

C
om

pl
et

io
n

A
na

ly
si

s

D
es

ig
n

P
ro

gr
es

s

02040608010
0

12
0

14
0

16
0

18
0

20
0

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Number of Units Completing Design

P
la

n
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

Ju
ly

 9
7

F
ig

 5
.4

-1
8a

D
es

ig
n

P
ro

gr
es

s
B

y
C

I

0102030405060

C
I A

C
I B

C
I C

Number of Units Completing Design

T
ot

al
P

la
n

P
la

n
to

 D
at

e
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

Ju
ly

 9
7

F
ig

 5
.4

-1
8b

S
ta

ff
Le

ve
l

0510152025

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Number of Staff

P
la

n
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

Ju
ly

 9
7

F
ig

 5
.4

-1
8c

S
ta

ff
Le

ve
l

B
y

La
bo

r C
at

eg
or

y

024681012

S
r.

 S
ys

te
m

s
E

ng
in

ee
r

S
ys

te
m

s
E

ng
in

ee
r

S
r.

 S
of

tw
ar

e
E

ng
in

ee
r

S
of

tw
ar

e
E

ng
in

ee
r

Number of Staff

P
la

n
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

Ju
ly

 9
7

F
ig

 5
.4

-1
8d

Part 5 - Measurement Analysis and Indicator Examples

Page 368

4.19 Test Completion

Issue Schedule and Progress
Product Quality
Personnel

Category Work Unit Progress
Defects
Personnel

Measure Component Status
Problem Reports
Staff Level

Description Two issues that impact test completion and often result in test progress problems
are: 1) not receiving components on schedule to test, and 2) waiting for fixed
components to return to test after problems have been identified. This example
shows how four indicators can be used to monitor test progress during the
integration and test phase of a software development project.

Example
Graph

Figure 5.4-19a contains a line graph of the number of components completing the
implementation activity. Figure 5.4-19b shows a line graph of the same
components completing the next development activity, testing. Three progress
measures are compared: 1) the original plans for component test completion; 2)
components for which tests have been attempted; and 3) components that have
passed testing.

Figure 5.4-19c shows the cumulative number of problem reports that have been
written and closed during the testing activity. Figure 5.4-19d is a line graph of the
staffing used to complete the test and problem resolution activities.

Performance
Analysis

Figure 5.4-19a shows that implementation of components, and consequently,
delivery of components to the testing group, was late. While all components have
been delivered, they were delivered weeks behind the original schedule.

The test progress graph, Figure 5.4-19b, indicates that not as many components
were tested as originally planned, and not as many components that were tested
passed. Of particular concern is the large number of tests that have failed.

Figure 5.4-19c shows that testing has discovered a large number of problems. The
closure rate is not keeping pace with the discovery rate. Additionally, some high
priority problem reports are still open, which may also be impacting test progress.
The final graph, Figure 5.4-19d, indicates that test staffing was to be reduced, but
the delays have prevented this.

Test schedules and staffing plans should be revised, based on developer input
regarding new plans for fixing the outstanding problem reports.

 Part 5 - Analysis Examples

Page 369

Additional
Analyses

The analysis should determine why the “components passed” trend line on Figure
5.4-19b has recently leveled off. It may be that a large number of components are
actually being tested, but have not “passed” due to problem reports found.
Another reason may be that components originally delivered to test have been
returned to development to await defect resolution. This means that testing cannot
be completed for those components.

Lessons
Learned

Indicators of delays in development activities can provide warnings of “ripple
effects” that may impact future activities, such as testing. In many cases, progress
shortfalls are attributable to more than one factor.

P
ar

t 5
 -

 M
ea

su
re

m
en

t A
na

ly
si

s
an

d
In

di
ca

to
r

E
xa

m
pl

es

P
ag

e
37

0

T
es

t C
om

pl
et

io
n

A
na

ly
si

s

Im
pl

em
en

ta
tio

n
P

ro
gr

es
s

0102030405060708090

10
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

Number of Components

P
la

n
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
0

M
ar

 9
7

F
ig

 5
.4

-1
9a

Te
st

 P
ro

gr
es

s
C

om
po

ne
nt

s
S

uc
ce

ss
fu

ly
 T

es
te

d

010203040506070809010
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

Number of Components

P
la

n
A

tte
m

pt
ed

P
as

se
d

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
0

M
ar

 9
7

F
ig

 5
.4

-1
9b

P
ro

bl
em

 R
ep

or
t S

ta
tu

s

05010
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
0

M
ar

 9
7

O
pe

n
P

T
R

s
by

 P
rio

rit
y

H
ig

h
=

5
M

ed
iu

m
 =

 6
5

Lo
w

 =
 1

55

F
ig

 5
.4

-1
9c

S
ta

ff
Le

ve
l

T
e

st
 O

rg
a

n
iz

a
ti

o
n

012345678 1
Ja

n
22

 J
an

12
 F

eb
5

M
ar

26
 M

ar

Number of Staff
P

la
n

A
ct

ua
l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
0

M
ar

 9
7

F
ig

 5
.4

-1
9d

 Part 5 - Analysis Examples

Page 371

Part 5 - Measurement Analysis and Indicator Examples

Page 372

4.20 Readiness for Delivery

Issue Schedule and Progress
Product Quality
Growth and Stability

Category Work Unit Progress
Defects
Target Computer Resource Utilization

Measure Requirement Status
Problem Reports
Failure Interval
CPU Utilization

Description As a system approaches its delivery date, a number of issues may influence the
decision to release the product. In addition to assuring that all testing has been
completed, it is often necessary to demonstrate that certain contract requirements
have been met. For example, identified constraints may need to be
accommodated, or specified thresholds may need to be met. Figure 5.4-20
contains a set of diverse indicators that represent the specific concerns for this
sample project prior to release.

Example
Graph

Figure 5.4-20a is a line graph with the number of requirements that have been
successfully tested. Figure 5.4-20b is a line graph of the number of open problem
reports, by priority.

Figure 5.4-20c is a line graph of the reliability of the software. Reliability is
measured as the number of hours between failures, calculated by logging the total
number of usage hours that elapse between failures during acceptance test. The
threshold specified by contract requirement is also indicated in the figure. Figure
5.4-20d shows the CPU utilization of the system, measured against the contract
requirement for a 50% reserve. This is based on a peak measurement. Both
reliability and CPU utilization are based on a user defined operational scenario.

Performance
Analysis

Figure 5.4-20a reveals that requirements testing is proceeding close to plan, with
almost 80% of requirements tested to date. It appears that the release date of April
can be completed as scheduled.

The number and severity of open problem reports, shown in Figure 5.4-20b,
indicates that only six high-priority problems remain open. The number of open
problems for all priorities is going down. These open problems will have to be
fixed before the system can be released.

Figure 5.4-20c indicates that software reliability is approaching the acceptable
minimum of 100 hours between failures, and the trend line continues to rise. The
failure interval does not appear to be a cause for concern at this point. Figure 5.4-
20d shows that tests of current utilization levels are above the 50% threshold, but
only slightly. Altogether, these indicators demonstrate that the project is making
steady progress in completing testing activities and should be able to be delivered
as scheduled.

 Part 5 - Analysis Examples

Page 373

Additional
Analyses

The remaining open problem reports probably should be reviewed to ensure that
deferment of those problems will not adversely affect usability or key customer
requirements. Any high priority problems will most likely need to be corrected
prior to delivery.

Reducing the CPU utilization rate would probably require additional changes to
some projects that have otherwise been certified as working properly. This rework
decision could delay delivery. The project manager may decide to make a trade-
off by accepting a system that exceeds the desired threshold, but allowing the
system to be delivered on time. A future enhancement might be to purchase faster
hardware.

Lessons
Learned

The question of what constitutes “good enough” is a difficult one. Large complex
projects will always have some defects remaining at delivery. It is essential to
develop quantitative criteria for what type and number are permitted. One
advanced military aircraft program, for example, will not deliver if any defects
remain that affect safety or the ability to perform a mission.

Time to market is an important consideration for commercial developments and an
increasing number of government projects.

s P
ag

e
37

4

R
ea

di
ne

ss
 fo

r
D

el
iv

er
y

A
na

ly
si

s

Te
st

 P
ro

gr
es

s

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

1
Ja

n
22

 J
an

12
 F

eb
5

M
ar

26
 M

ar
16

 A
pr

Number of Requirements

P
la

n
A

ct
ua

l

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
7

F
ig

 5
.4

-2
0a

P
ro

bl
em

 R
ep

or
t S

ta
tu

s
O

pe
n

B
y

P
rio

rit
y

010203040506070809010
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

16
 A

pr

Number of Problem Reports

H
ig

h
M

ed
iu

m
Lo

w

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
7

F
ig

 5
.4

-2
0b

S
of

tw
ar

e
R

el
ia

bi
lit

y

020406080

10
0

12
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

16
 A

pr

Hours Between Failures

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
7

T
hr

es
ho

ld

F
ig

 5
.4

-2
0c

C
P

U
 U

til
iz

at
io

n

0102030405060708090

10
0 1

Ja
n

22
 J

an
12

 F
eb

5
M

ar
26

 M
ar

16
 A

pr

Percent of CPU Cycles

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 3
1

M
ar

 9
7

T
hr

es
ho

ld

F
ig

 5
.4

-2
0d

 Part 5 - Analysis Examples

Page 375

Part 5 - Analysis Examples

Page 376

4.21 Maintenance Status

Issue Growth and Stability
Product Quality
Schedule and Progress

Category Functional Size and Stability
Defects
Milestone Performance

Measure Requirements
Change Request Workload
Failure Interval
Milestone Dates

Description System maintenance issues are often different than issues related to new software
development. Figure 5.4-21 provides a sample set of measurement indicators
which might be monitored on a regular basis for a system that has recently entered
the sustained engineering phase. The sample system is currently on a three-month
release cycle. The system has undergone three releases so far this year. Work on
a fourth release is currently in progress.

Example
Graph

Figure 5.4-21a is a bar chart of requirement stability. Data is provided, by release,
for each requirement added, modified, or deleted. Figure 5.4-21b contains a line
graph of the number of approved pending change requests over time. This graph
also contains bars representing the number of change requests that have been
implemented in each of the completed releases. When a release actually occurs,
change requests addressed in the release are closed and removed from the backlog.
Between releases, new change requests increase the backlog of pending change
requests.

The third chart, Figure 5.4-21c tracks software reliability. It is calculated by
dividing the number of failures reported by the actual hours of usage between
releases. The final indicator, Figure 5.4-21d, is a milestone chart that tracks the
plan and actual schedule for each release.

Performance
Analysis

Figure 5.4-21a provides an indication of how the planned content of each release
was affected by changing requirements prior to installation. Maintenance
requirements for this project are approved change requests. Unplanned changes in
release content can cause delays because work effort is often expended making
changes to one set of requirements, and then those requirements are set aside to
work on higher priority requests in the release. This is what happened during
May. A large number of changed requirements were associated with Release 2.

Figure 5.4-21b shows that only a few additional change requests have been
introduced in the last 10 months, and the backlog of changes is being gradually
reduced.

The increase in the failure rate of Release 2, as shown in Figure 5.4-21c, is
probably related to the volatility of the content of Release 2.. Releases 1 and 3
have exhibited a failure rate below the desired target rate.

 Part 5 - Analysis Examples

Page 377

Finally, Figure 5.4-21d, milestone progress, shows that Release 2 took longer than
planned and that Release 4 is behind schedule. The delay for Release 2 was
probably due to the large number of changes made in that release. The reason for
the delay in Release 4 is most likely due, again, to changes in release content (see
Figure 5.4-21a).

Additional
Analyses

Since requirements volatility appears to be causing schedule delays and problems
with reliability, the process for release content planning should be reviewed. The
project manager may want to consider tighter controls on requirements changes.

Lessons
Learned

Requirements volatility often causes future problems including schedule delays,
effort overruns, and quality problems.

P
ar

t 5
 -

 A
na

ly
si

s
E

xa
m

pl
es

P
ag

e
37

8

M
ai

nt
en

an
ce

R
eq

ui
re

m
en

ts
 S

ta
bi

lit
y

B
y

T
yp

e
of

 C
ha

ng
e

-5
00

50

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Number of Requirements

A
dd

ed
M

od
ifi

ed
D

el
et

ed

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
5

O
ct

 9
7

R
el

ea
se

 1

R
el

ea
se

 2

R
el

ea
se

 3

R
el

ea
se

 4

F
ig

ur
e

5.
4-

21
a

C
ha

ng
e

R
eq

ue
st

s
Im

pl
em

en
te

d

010203040506070

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Change Requests

A
ct

ua
l C

lo
su

re
O

pe
n

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
5

O
ct

 9
7

F
ig

ur
e

5.
4-

21
b

S
of

tw
ar

e
R

el
ia

bi
lit

y

02468

101214

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

Failures per 1000 Hours

P
ro

je
ct

: P
S

M
D

at
a

as
 o

f 1
5

O
ct

 9
7

R
el

ea
se

 1
R

el
ea

se
 2

R
el

ea
se

 3
R

el
ea

se
 4

T
ar

ge
t

F
ig

ur
e

5.
4-

21
c

M
ile

st
on

e
P

ro
gr

es
s

M
ai

nt
en

an
ce

 A
ct

iv
iti

es

A
ct

iv
ity

R
el

ea
se

 1

P

la
n

A

ct
ua

l

R
el

ea
se

 2

P

la
n

A

ct
ua

l

R
el

ea
se

 3

P

la
n

A

ct
ua

l

R
el

ea
se

 4

P

la
n

A

ct
ua

l

1/
10

2/
14

1/
10

2/
21

2/
17

4/
18

2/
25

5/
12

4/
21

7/
10

5/
13

7/
8

7/
10

10
/1

0

7/
10

11
/1

4

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

19
97

P
ro

gr
am

: P
S

M
D

at
a

as
 o

f 1
5

O
ct

 9
7

F
ig

ur
e

5.
4-

21
d

 Part 5 - Analysis Examples

Page 379

Part 5 - Analysis Examples

Page 380

4.22 Maintainability

Issue Growth and Stability
Product Quality

Category Product Size and Stability
Defects

Measure Lines of Code
Problem Reports
Defect Density
Components
Cyclomatic Complexity

Description This integrated analysis technique is used to compare components of a system and
to identify any components that need additional attention.

Example
Graph

Figure 5.4-22 is a chart that contains data from multiple measures for each CI.
The data is actual data as of a specified time.

Performance
Analysis

Look for CIs with higher than average defect density and complexity. In Figure
5.4-22, the Navigation CI has the highest defect density, as well as the highest
average complexity and the largest number of units with a complexity of more
than 10. System Services also has high numbers across the measures.

While Display Services has a relatively high average complexity, it does not have
a lot of defects relative to size. While some of the units are complex, they are
relatively straightforward case statements. It does not appear to be as much of a
concern.

Additional
Analyses

Additional analysis should be done on the most complex and defect-prone
components. This may involve spending additional time on design and code
inspections. In addition, additional time may need to be spent testing the most
complex units.

Lessons
Learned

Complex units with high defect levels often cost more to test and maintain.

 Part 5 - Analysis Examples

Page 381

Maintainability

CSCI Size
(KSLOC)

Total
Valid

Defects

Defect
Density

Number
of Units

Average
Complexity

Units w/
Complexity

> 10

Navigation 124.8 42 0.34 156 9.2 26

Sonar 45.6 12 0.26 68 6.7 15
Weapons 56.6 14 0.25 75 5.2 8
System
Services

75.3 20 0.27 102 7.5 16

Display
Services

168.0 32 0.19 125 8.6 12

Training 25.5 3 0.12 42 4.2 3

Total/Average 495.8 123 0.25 568 1.3 80

Project: PSM Data as of 31 Mar 98

Figure 5.4-22.

Part 5 - Analysis Examples

Page 382

PSMPSMPSMPSM
SOFTWARE MEASUREMENT

CASE STUDIES

PART 6

Part 6 - Software Measurement Case Studies

Page 384

Part 6 - Software Measurement Case Studies

Page 385

SOFTWARE MEASUREMENT CASE STUDIES

Practical Software Measurement: A Foundation for Objective Project Management was
developed to show how measurement can be used to address the software issues faced by
today’s government and commercial project managers. To better illustrate how the
measurement process is implemented for different types of projects, this part of the
Guide contains three case studies. These case studies describe how the measurement
process is tailored and applied to meet specific project management requirements.

The PSM case studies address the issues and challenges that most project managers face
in planning, implementing, and maintaining software-intensive projects. The case
studies concentrate on the issues that the project manager must address with respect to
managing the project within defined acquisition and technical constraints. The show
how measurement is used to help make decisions concerning project issues.

Although the Practical Software Measurement case study parameters are based on
actual project characteristics, the project scenarios, including the described system
architectures, project names, and project organizations are fictitious.

The Case Studies are is organized into three sub-sections:

• Part 6A, Weapons System Case Study - is based upon a major shipboard Weapons
development.

• Part 6B, Information System Case Study - describes an information system used to
manage military personnel information.

• Part 6C, Sustaining Engineering Case Study - is based on a deployed radar system
in sustaining engineering.

Part 6 - Software Measurement Case Studies

Page 386

Part 6 - Software Measurement Case Studies

Page 387

TABLE OF CONTENTS

WEAPONS SYSTEM CASE STUDY... 389

CHAPTER 1 - PROGRAM OVERVIEW... 393
1.1 Introduction ..393
1.2 Program Technical Approach...394

1.2.1 System Requirements Definition and Design Analysis..394

1.2.2 DDG 51 C
4
I Baseline System Description..395

1.2.3 System Requirements and Design Recommendations..397

1.3 Program Management Approach...398

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION 401
2.1 Software Program Planning..401
2.2 Software Acquisition...404

2.2.1 Request for Proposal...404

2.2.2 Proposal Evaluation..406

2.2.3 Award ..408

2.2.4 Negotiations...410

CHAPTER 3 - SOFTWARE DEVELOPMENT ... 415
3.1 Tracking Development Performance..415

3.1.1 Software Measurement Overview...415

3.1.2 Software Issue Identification and Analysis..416

3.2 Revising The Development Plan...428
3.3 Software Delivery..429
3.4 Epilogue...431

INFORMATION SYSTEM CASE STUDY.. 433

CHAPTER 1 - PROJECT OVERVIEW .. 437
1.1 Introduction ..437
1.2 Air Force Business Process Modernization Initiative..438
1.3 Project Description..440
1.4 System Architecture and Functionality..441

Part 6 - Software Measurement Case Studies

Page 388

1.4.1 Current Personnel System...441

1.4.2 Military Automated Personnel System (MAPS)..442

CHAPTER 2 - GETTING THE PROJECT UNDER CONTROL 445
2.1 Evaluating the Software Development Plan...447
2.2 Revising the Software Development Plan...448
2.3 Tracking Performance Against the Revised Plan..452

CHAPTER 3 - EVALUATING READINESS FOR TEST................................. 459
3.1 Increment 1..459
3.2 Increment 2..463

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT 467
4.1 Increment 1 Installation..467
4.2 Software Support..469
4.3 Epilogue...471

SENSOR SUSTAINING ENGINEERING CASE STUDY................................. 473

CHAPTER 1 - PROJECT OVERVIEW .. 477
1.1 Introduction ..477
1.2 System Architecture and Functionality..479

CHAPTER 2 – TAILORING MEASURES TO THE PROJECT 481
2.1 Development of SPOTS Measurement Strategy..482
2.2 Implementation of SPOTS Measurement Strategy..486
2.3 SPOTS Measurement Tools..491

CHAPTER 3 – APPLYING SOFTWARE MEASURES 493
3.1 Estimating Effort on an Individual Change Request...493
3.2 Estimating Cost on a Software Maintenance Release..495
3.3 Measuring Requirements Volatility...498
3.4 Epilogue...500

Part 6 - Software Measurement Case Studies

Page 389

WEAPON SYSTEM

CASE STUDY

PART 6A

Part 6 - Software Measurement Case Studies

Page 390

Part 6 - Software Measurement Case Studies

Page 391

WEAPONS SYSTEM CASE STUDY

The weapons system case study describes the development of a complex shipboard
weapons system designed to integrate multiple-platform target engagement and weapons
management functions into an existing system baseline. In this scenario, measurement is
used to help estimate, plan, and track the software development effort from the inception
of the program through system deployment. The development approach is based on the
upgrade of an existing system using commercial-off-the-shelf (COTS) components and
reused software in a revised architecture. The developer is a competitively selected
contractor who works closely with the Navy Program Manager to identify and resolve
typical issues in a large development program. These issues include software
requirements and size growth, incremental schedule slips, and overall software
development productivity shortfalls.

The Weapons System case study is organized into three chapters:

• Chapter 1, Program Overview - describes the technical and management aspects of
the software development effort.

• Chapter 2, Program Planning and Acquisition - shows how measurement can be
used to estimate the basic size, effort and schedule parameters and to define and
evaluate a realistic software development plan.

• Chapter 3, Software Development - illustrates how measurement helps to identify
and track software issues, and how the program manager uses measurement
information to evaluate development status and make informed program decisions.

Part 6 - Software Measurement Case Studies

Page 392

Part 6 - Software Measurement Case Studies

Page 393

CHAPTER 1 - PROGRAM OVERVIEW

This chapter introduces the example Navy program and describes the technical and
management aspects of the development effort. The program scenario is based on a major
program upgrade to an existing Navy surface ship Command, Control, Communications,
Computer, and Intelligence (C4I) system. The upgrade integrates multiple platform target
engagement and weapons management functions into an existing software functional
baseline. It includes the addition of new software functions to the system, as well as
modifications to the existing software baseline.

1.1 Introduction

In the early 1990’s, the Navy began to recognize a growing need for its ships and aircraft
to operate interactively in a multiple threat environment. This need was clearly
demonstrated during the Gulf War where well-coordinated engagements, which integrated
the capabilities of a number of different platforms, provided significant tactical
advantages.

To define its changing mission requirements, the Navy initiated a concept study to
determine the feasibility and effectiveness of integrating a multiple platform target
engagement capability into the fleet. The results of the study, completed in 1994, validated
the need for the proposed engagement capabilities and recommended an implementation
approach that built upon the Navy’s existing C4I tactical systems on various platforms.
The study recommended that the Navy initially focus on the upgrade of its existing surface
combatants with new communications, engagement management, and weapons control
functions. These new functions would be designed to allow two or more ships to engage
the enemy as a single entity. With the new capabilities, one ship would be able to manage
the overall sensor and target scenarios for the entire group and assign, launch, and control
the weapons on the other ships using advanced tactical communications links.

The Navy decided that the Arleigh Burke DDG 51 class of guided missile destroyers
(DDG) would be the first ships to receive the capability upgrade, as it was the largest and
most modern class of DDGs in the fleet. It named the program the DDG 51 Surface Ship
Concurrent Weapons Engagement Upgrade Program, or DDG 51 SCWE for short.
The objective of the DDG 51 SCWE program was to define, develop and integrate a new
concurrent weapons engagement function into the existing C4I system on the Arleigh Burke
DDGs. Most of the efforts were to be focused on the coordinated employment of long-
range surface-launched weapons, with an emphasis on the Tomahawk Cruise Missile.

Part 6 - Software Measurement Case Studies

Page 394

The DDG 51 SCWE program was projected to require significant changes in the
architecture of the existing DDG 51 C4I system, especially with respect to the software.
Existing software functions and interfaces required numerous changes, and the multiple
platform communications, target management, and weapons management functions had to
be developed and integrated. New acquisition policies made the use of an open systems
architecture (OSA) and commercial-off-the-shelf (COTS) software components
mandatory. The overall business environment required that the program be well managed
in terms of delivered functionality and in meeting pre-defined cost and schedule objectives.

The Navy recognized the critical nature of the software development component of the
DDG 51 Surface Ship Concurrent Weapons Engagement Upgrade Program and
emphasized the need for effective software management as part of the overall program
management approach. Understanding this need, the Naval Sea Systems Command
(NAVSEA) assigned Captain Katherine McLain, USN, as the Program Manager. Captain
McLain held an advanced degree in Electrical Engineering from Stanford University, and
she had served as the software technical manager on several previously successful Navy
development programs. Her last assignment was Deputy Program Manager for an
upgrade to the command and control system for the carrier fleet. After completing the
Program Manager’s course at the Defense Systems Management College (DSMC),
Captain McLain assembled her program management team at NAVSEA. Her office was
designated as PMO-551. The award date for DDG 51 SCWE Engineering and
Manufacturing Development (EMD) was projected for mid-1996. To ensure a successful
program, a considerable amount of work had to be completed before award.

1.2 Program Technical Approach

1.2.1 System Requirements Definition and Design Analysis

Based on her previous experience, Captain McLain was familiar with the software
architecture and capabilities of the existing DDG 51 C4I system. Like most of the large
Navy systems developed in the late 1980’s, the system on the Arleigh Burke DDG class
was built around the AN/UYK-43 Navy standard computer, which centrally handled the
processing for most of the system’s different functions. The original C4I systems on the
DDG 51’s had been incrementally upgraded since they were first deployed to integrate new
sensor and weapons capabilities. Over time, the system design had proven to be effective
and reliable.

The software for the DDG 51 C4I system was implemented largely in CMS-2, the Navy’s
pre-Ada standard high order programming language. The functions where real-time
processing and timing considerations were critical were coded in assembly language. The
original software had been developed using a modified DoD-STD-2167 software

Part 6 - Software Measurement Case Studies

Page 395

development process and was currently being maintained by the original developer under a
separate maintenance contract.

The mission requirements driving the DDG 51 SCWE program provided some significant
technical and program management challenges for PMO-551. Captain McLain felt that
one of the keys to a successful development program was a well-defined set of system
requirements. As part of the acquisition strategy, PMO-551 awarded a series of
competitive System Requirements Definition-Design Analysis Study Contracts. These
design study contracts were specifically implemented to accomplish the following:

• Provide a definitive analysis and characterization of the existing DDG 51 C4I system
hardware and software architectures.

• Develop an approved set of system level requirements for inclusion in the EMD
Request For Proposal (RFP).

• Develop innovative system design alternatives. These alternatives in particular were
focused on the use of COTS hardware and software components, and on the
integration of an OSA into the existing system to support future capability growth.

1.2.2 DDG 51 C4I Baseline System Description

The results of the System Requirements Definition-Design Analysis Study efforts provided
a detailed characterization of the existing DDG 51 C4I software architecture. Figure 6a.1-
1, a simplified system diagram, shows that the system consisted of six primary software
functions, all resident in the AN/UYK-43 computer. Data interfaces to the External
Communications subsystems, the Weapons subsystems, and to own-ship sensors
encompassing Navigation, Radar, Sonar, and Electronic Support Measures (ESM), were
through the System Control software function using a Navy Tactical Data System (NTDS)
interface protocol. Two-way data communications to the Command Display and Control
consoles was also provided by the System Control software through an NTDS interface.

Each of the six primary software functions in the system was comprised of three to six
software Configuration Items (CIs), as defined in DoD-STD-2167. In all, there were 24
CIs in the baseline system. The software architecture was well defined, and the original
developer had done an excellent job of allocating and mapping the original software
requirements to the CIs. There was a full set of software technical specifications
available, but they had not been kept uniformly up to date, especially with respect to the
incremental design changes.

The DDG 51 C4I system software was relatively large and somewhat complex. The
various software functions worked together to integrate real-time data from a variety of

Part 6 - Software Measurement Case Studies

Page 396

distinct combat and ship control subsystems and processed the data into the information
needed to effectively engage enemy targets.

External
Communications

Weapons

NAV

RADAR

SONAR

ESM

System Display and Control

NTDS

AN/UYK-43 Computer
System Control

Surface Control

Target Tracking

Threat Evaluation

Target Engagement

External Comms

Figure 6a.1-1. The DDG 51 Weapons System software architecture would provide

six primary software functions, all resident in the AN/UYK-43 computer.

Each of the six primary software functions addressed a unique set of functional
requirements:

• System Control - The System Control function included the AN/UYK-43 operating
system and provided the primary software services functions for the system. Its
functions included system database management, initial program load, configuration
and reconfiguration management, and display control.

• Surface Control - The Surface Control function addressed own-ship maneuvering and
navigation requirements and calculated ship’s heading, speed, and position on a real-
time basis. It also included capabilities that helped position the ship with respect to
other surface contacts.

• Target Tracking - The Target Tracking function integrated and correlated all sensor
data, and calculated, evaluated, and tracked surface, subsurface, and air contacts on a
real-time basis.

• Threat Evaluation - The Threat Evaluation function correlated all of the sensor data
from all targets and, through a series of complex threat algorithms, calculated and
prioritized each target within an overall threat profile.

Part 6 - Software Measurement Case Studies

Page 397

• Target Engagement - The Target Engagement function included software that
managed the overall enemy engagement and controlled all weapons allocations to
individual targets. It also assigned weapons presets based on the calculated target
parameters. This function was one of the most critical in the system.

• External Communications - The External Communications function provided
interfaces between the C4I system and a number of tactical digital communications
data links. These data links provided for the exchange of contact and targeting
information with other off-ship platforms.

Together, the DDG 51 C4I system software functions included over one million logical
lines of source code distributed among 24 CIs as shown in Figure 6a.1-2.

DDG 51 Baseline System
Software Description

Function Number
of CIs

Language Size
(SLOC)

System Control 6 CMS-2/Assembly 305,000
Surface Control 3 CMS-2/Assembly 175,000
Target Tracking 3 CMS-2 125,000
Threat Evaluation 3 CMS-2/Assembly 180,000
Target Engagement 5 CMS-2 220,000
External Communications 4 CMS-2 110,000
Total 24 1,115,000

PMO-551: DDG 51 SCWE Data as of 15 Oct 95

Figure 6a.1-2. The DDG 51 C4I system software functions will require over a

million logical lines of source code and 24 CIs.

1.2.3 System Requirements and Design Recommendations

The System Requirements Definition-Design Analysis study effort provided a definitive set
of system level requirements for the DDG 51 SCWE upgrade program. After reviewing
the requirements with her staff, Captain McLain had a clear understanding of the
magnitude of the changes required for the existing DDG 51 C4I system. She knew that the
new multi-ship engagement functions would have a significant impact on the existing
system and software architectures. She also estimated that the current software baseline
would more than double in size.

In addition to the new multiple platform engagement management and weapons control
functions, the system level requirements included the need for:

Part 6 - Software Measurement Case Studies

Page 398

• New display processing capabilities

• New assignable command and display workstations

• Automatic reconfiguration of the engagement control functions in the event of a
platform specific failure

• Enhanced weapons safety provisions

• Advanced multiple ship and aircraft contact correlation

• Additional secure digital data links

• An increase in the overall system processing capacity

Even at this point in the program, Captain McLain knew that managing the requirements,
especially those allocated to the software, would be important to the success of the upgrade
program.

Given the large amount of functionality that was to be added to the baseline DDG 51
system, the System Requirements Definition-Design Analysis studies also proposed a
number of system and software design alternatives that addressed the Navy’s desire for
development affordability and life-cycle cost savings. These alternatives were all based
upon retaining a large part of the baseline system hardware and software and adding the
new capabilities using COTS components integrated via an OSA local area network. In all
cases, the alternatives addressed the addition of new processing and display capabilities
using advanced display workstations.

The design alternatives outlined in the study recommendations maintained much of the
integrity of the existing system hardware and software. In addition, they addressed the
Navy’s policy to embrace open commercial interface standards and COTS products in
implementing the new functionality.

1.3 Program Management Approach

With the system specifications and the design studies completed, Captain McLain began to
concentrate on the program’s acquisition requirements. With her own program office
personnel, and support from the Naval Surface Warfare Center (NSWC) in Dahlgren,
Virginia, Captain McLain believed she had a capable acquisition team, especially with
respect to software.

With the changes in the DoD business environment over the past several years, Captain
McLain knew that the DDG 51 SCWE program would be visible within the Navy and

Part 6 - Software Measurement Case Studies

Page 399

DoD. It was one of the first major programs to fully address the DoD’s acquisition reform
requirements, which included Cost As An Independent Variable (CAIV), the extensive use
of commercial standards, COTS hardware and software, software reuse, and the
integration of an open system architecture.

One of the key aspects of acquisition reform was its emphasis on less developer oversight
by the acquisition organization. Captain McLain’s program office, PMO-551, was
assigned half the number of personnel than would have been typical only a few years
earlier. She knew that her office would have to function much more efficiently than it had
in the past. This requirement led to several critical software decisions by Captain McLain:

• The developer had to have a mature software development process, and the
developer’s overall capability with respect to software process would be a key
consideration in source selection.

• Insight into the software processes and products, across all activities and development
phases, would be provided by an issue-driven software measurement process. Both
PMO-551 and the developer would use software measurement to identify and manage
the software development issues. When one of her senior staff members protested that
they couldn’t afford a measurement program, Captain McLain countered that they
couldn’t afford not to have one.

• The winning contractor would be required to implement a formal risk management
program. The results of the risk assessment would be used as a major input in
tailoring the measurement program. The measurements, in turn, would be used to help
manage risks.

• The government and developer organizations would function as a software engineering
integrated product team (IPT). IPTs would also be established for weapons and for
electronic countermeasures. The IPT would be given broad decision-making authority
in addressing issues within the software arena. One of the IPT tasks was to integrate
the measurement activities with risk management and financial performance
management to establish an Earned-Value reporting system. Decisions requiring
coordination with other IPTs would be addressed by an overarching IPT, of which
Captain McLain was the IPT lead.

• Given the funding constraints within the current environment, the DDG 51 SCWE
program would implement Cost-As-An-Independent Variable (CAIV). Cost would be
a major consideration in evaluating design alternatives. The IPTs would be given
authority to consider a variety of design options as long as critical performance and
reliability requirements were met. There was the possibility of tradeoffs between the
hardware and software functions in order to meet the overall program cost objectives.
Captain McLain would monitor software requirements growth and financial
performance closely.

Part 6 - Software Measurement Case Studies

Page 400

• The software would be developed using a tailored MIL-STD-498 development
process. Along with this, a detailed software Work Breakdown Structure (WBS)
would be implemented to manage the program’s development products and activities.

Captain McLain planned to award the development contract to a capable software
developer with a proven performance history. She made it clear that she expected both her
PMO-551 organization and the developer to address the software issues in an objective
manner. Captain McLain knew that delivering software that meets the specified
requirements to the fleet within the program’s schedule and funding constraints would be a
significant challenge.

Part 6 - Software Measurement Case Studies

Page 401

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION

With the system requirements completed, PMO-551 began to focus on the detailed
planning for the DDG 51 Surface Ship Concurrent Weapons Engagement Upgrade
Program. Before awarding the development contract, Captain McLain and the Navy
program team had to define a feasible software development plan, issue the Request for
Proposal (RFP) and evaluate the submitted proposals during source selection. Even at this
early planning stage, Captain McLain used information derived from the software
measurement process to support her planning objectives.

This chapter of the case study shows how software measurement can help during the
Program Planning phase of software development. The activities that take place during
this phase set the stage for project success or failure. Their importance cannot be over-
emphasized. It is during this time in the program that the program manager implements
the measurement process as an integral part of the overall program management structure.
Software measurement is used to ensure that the software development estimates are
realistic, that the plan is feasible, and that the software developer has the capability to
successfully complete the job.

2.1 Software Program Planning

The most important software planning task for Captain McLain and her staff was to
develop a realistic DDG 51 SCWE software implementation plan. Aware of the direct
relationships between the overall size of the software and development cost and schedule,
Captain McLain and her software engineering team generated estimates for the key
parameters.

PMO-551 began with a preliminary allocation of the system requirements to a notional set
of software components, keeping in mind that they would be retaining much of the existing
software and using a significant amount of COTS software to implement the new
functions. Based on these requirements, and the size of the existing code, the team
estimated the size of the software to be developed. They knew that there was a great deal
of uncertainty in those estimates but this was a starting point for setting the basic size,
cost, and schedule parameters for the program.

Using the size estimates, they generated estimates of development effort and schedule using
two techniques. First, they had their own engineering rules-of-thumb for development
productivity (lines of code per staff month) and code-production rates (lines of code per
calendar month). These rules-of-thumb were derived from past experiences with similar
C4I programs. In both cases, these engineering estimates encompassed the key software

Part 6 - Software Measurement Case Studies

Page 402

development activities (software requirements analysis through system integration and
test). Secondly, they used a commercially-available software cost estimating model. With
this model, they could express the uncertainty of their size estimates by entering a range of
estimates for each of the notional system components from very low to very high. The
model then estimated a range of values for cost and schedule. At the low end, the cost and
schedule were estimated to occur with a likelihood of only 5%; at the upper end, the
likelihood was 95%; the middle value would occur with a likelihood of 50%.

From these estimates, Captain McLain concluded that the schedule required to realistically
complete the software was between 64 and 78 months, starting with contract award and
ending with hardware-software integration and test and delivery to the shipyard for the
start of operational testing. Unfortunately, this time was somewhat longer than the
schedule the Navy had defined. The ship deployment and shipyard availability schedules
were driving the DDG 51 SCWE development schedule, and the software was the “long
pole in the tent.” Based on her analysis, Captain McLain knew that the schedule was
going to be high risk, and took steps to address this issue in her plan.

Captain McLain understood that the program budget and functional requirements were
essentially set; therefore, she looked at several options for reducing the planned software
development schedule.

Captain McLain updated her plan to include the following:

• More parallel implementation of the software development activities. This included an
incremental development approach for the software with the functionality developed
and integrated into multiple builds and the overlapping of specific software
implementation, integration, and test activities.

• Maximized use of COTS and non-developed (NDI) software, and the reuse of as much
of the existing code as possible.

• Assumption of relatively high software development productivity based on her plan to
make the developer’s software process capability a key criterion for contract award.

After these modifications, the PMO-551 re-ran the software estimates. Specifically, the
PMO-551 planning team assumed the amount of code that had to be developed was
smaller due to the use of additional COTS software and more reused software components
from the baseline system. The resulting DDG 51 SCWE software development schedule
showed that the full set of software requirements could be implemented in 66 months,
within the original cost objective. This estimate was close to the delivery target date set by
the Navy.

From a technical perspective, Captain McLain decided that any new software developed
for the system should be implemented in Ada, using the Ada 95 standard.

Part 6 - Software Measurement Case Studies

Page 403

Since the start of the program, Captain McLain had emphasized the value of a formal risk
management process. Captain McLain used the risk assessment results to help identify the
software issues that the measurement process should address. In reviewing the results of
the risk assessment, the following software risks were identified:

• The software development schedule was, as expected, highly constrained. Based on a
number of trial runs with a software cost model, the planning team assigned a
probability of 0.80 that the planned delivery of the software to systems integration
would be late. They assigned an impact of 10 to this event, since the software was on
the critical path for system delivery and operational test. Captain McLain knew that
the software schedule was an extremely high-priority issue. If the developer could not
meet the schedule, Captain McLain wanted to know as early as possible so she could
consider alternative actions. The relative risk exposure, on a scale of 1 to 10, was
assigned an 8 for the schedule issue. Further quantification of the impact in terms of
dollars showed that any software schedule slip would have a significant cost impact on
the program.

• The risk assessment indicated a possibility that the DBMS access routines would not
meet the real-time response requirements. A probability of 0.25 was assigned to this
event, with a relative impact of 10. This event was assigned the highest relative
impact because not meeting the real-time response requirements could result in loss of
mission capability. The resulting risk exposure was 2.5.

• The functional architecture for the Electronic Support Measures was untried. There
was a risk of interference between the receivers and transmitters. This interference,
however, could be corrected by software. The risk analyst assigned a 0.30 probability
to this event and an impact of 8. The impact was assigned a high priority because the
mission capability could be seriously jeopardized. The risk exposure was 2.4.

• There was a possibility that the new surface missile might not be ready for deployment
during the operational test and evaluation phase. The analyst assigned a probability of
0.20 and an impact of 2, since the primary mission could still be performed without
the new missile. The risk exposure was 0.4. This was a program-level risk, rather
than a software-level risk.

• The successful use of COTS and the incorporation of much of the existing software
baseline was key to the whole strategy of completing the program within the schedule
and cost constraints. If serious problems arose with the COTS software or with the
baseline software, a major replan would be necessary. The analyst assigned a
probably of .35 to this event and an impact of 7, resulting in a risk exposure of 2.45.

By integrating the risk assessment results, the planning team had derived additional
objective information to help identify and prioritize the software issues. The risk exposure

Part 6 - Software Measurement Case Studies

Page 404

calculations strongly supported the less formal definitions of the software issues, and
helped to focus the measurement efforts of the program.

Captain McLain identified the following additional concerns:

• The budget was fixed for the program as a whole. Strict financial monitoring was a
high priority. The program was required to report Earned Value for both hardware
and software.

• With concurrent hardware development, the possibility of software requirements
growth was almost a certainty as the software would have to make up for unforeseen
hardware problems.

• A high level of developer performance was also a key part of the strategy. Captain
McLain felt that her primary leverage here was to chose a contractor with a mature
software process and appropriate domain experience.

• Product quality was also a concern considering that these were life-critical
applications.

• At the completion of the PMO-551 planning process, Captain McLain had a good idea
of what her software development issues were and where she would have to focus her
attention during the development. Given the complexity of the DDG 51 SCWE
program, she knew that measurement was her primary means to stay on top of things.

2.2 Software Acquisition

2.2.1 Request for Proposal

After the PMO-551 software cost and schedule estimate and the risk analysis and issue
identification was complete, Captain McLain turned her attention to issuing the DDG 51
SCWE Request for Proposal (RFP) and to choosing a capable developer. The results of
the design analysis studies were made available to all bidders. At the bidder’s conference,
Captain McLain made it clear that the successful bidder would have to demonstrate an
effective software development process capability. With the success of the program tied to
the overall capability of the software developer, Captain McLain specifically addressed her
software development requirements in the RFP. In their proposals, the bidders were
required to provide the following:

• Their preliminary allocation of the system level requirements provided with the RFP to
a proposed software architecture.

Part 6 - Software Measurement Case Studies

Page 405

• Their approach for using the existing DDG 51 C4I software as the baseline for DDG
51 SCWE software development.

• Their proposed use of COTS software components and an OSA in the redesigned
system.

• A comprehensive set of software data describing the bidder’s performance on similar
development programs. These data included sizing, schedule, effort, and problem
report data, as well as program descriptive data required to evaluate the developer’s
software development performance.

• In their proposal, the bidders were to include a proposed work breakdown structure
(WBS). This would be used as a basis for tracking Earned Value.

• A detailed description of the proposed software development processes and activities,
coupled to an overall DDG 51 SCWE software development plan.

• A description of how measurement. risk management, and financial performance
management would work together to objectively manage the software effort.

The program issues were outlined in priority order as shown in Figure 6a.2-1. The RPF
also listed the measures shown in the figure. The bidders were required to fill in detailed
attributes for each measure based on what was available from their development process.
For example, for the measure “component status,” they were required to define
“component” and to indicate what status would be tracked, such as design, code, and
integration and test, along with the exit criteria.

Part 6 - Software Measurement Case Studies

Page 406

Issues and Measures Listed in RFP

Issues Measures
Schedule and
Progress

Milestone Dates
Requirement Status
Component Status
Problem Report Status

Growth and Stability Requirements
Lines of Code

Technical Adequacy Software Origin (New, Reused, COTS)
Database Access Time

Quality Defect Density
Problem Reports

Resources and Cost Earned Value
Development
Performance

Product Size / Effort Ratio

PMO-551: DDG 51 SCWE Data as of 31 Mar 96

Figure 6a.2-1. Proposals for the DDG 51 SCWE software development

addressed the specific program issues.

2.2.2 Proposal Evaluation

The RFP was released in the fall of 1995, and a total of five proposals were submitted. Of
these five, two were considered by the source selection team to be in the competitive range.
Each of the two prime contractors on these two bids was teamed with several
subcontractors. After a detailed evaluation of each proposal, a recommendation for award
was forwarded to the program manager. There were many aspects about the winning
proposal that impressed the source selection team:

• The successful bidder’s historical data was credible. The proposal provided clear
definitions for software size, schedule, effort, and problem report data, and indicated
what was included and what was excluded in the numbers. The data supported the
bidder’s claim that it had an effective software process.

• The successful bidder’s DDG 51 SCWE software development plan was based on
achievable performance and productivity objectives, and the rationale for the
projections was supported by objective estimates of the associated software
parameters. Further, the proposed software development plan included a detailed
software WBS mapped to the proposed architecture and development activities. The
WBS related the proposed software development process to the bidder’s
recommendations for tailoring MIL-STD-498.

Part 6 - Software Measurement Case Studies

Page 407

• The successful bidder’s software development plan included an incremental software
development approach with a relatively sequential set of development activities
allocated between two major builds.

• The successful bidder’s proposed measurement program met all of the requirements
specified in the RFP and clearly reflected that the bidder had experience in using both
measurement and risk management to support successful development programs.

From the systems design perspective, the successful bidder met the defined technical
requirements for the DDG 51 SCWE program. The proposed system design, as shown in
Figure 6a.2-2, included the following:

• The modification of the existing system architecture to include open system interfaces.
This change called specifically for the implementation of an open commercial standard
Fiber Distributed Data Interface (FDDI) Local Area Network (LAN) to interface the
existing sensors and the new functions to the AN/UYK-43 computer. This design
change provided for minimal “breakage” to the existing system and supported an
affordable development and future system expansion using cost-effective components.

• The development and integration of new display workstations with integrated
processors to handle the new multiple ship engagement functions and associated
display and control functions. The proposed workstation design made use of both
COTS hardware and software. The workstations were to be interfaced to the baseline
system through the FDDI LAN. This approach also addressed the need for an
advanced human-machine interface required to implement the new target engagement
and weapons management functions.

• The replacement of the existing flat-file data management software in the AN/UYK-43
with a COTS based relational database manager and the use of the same relational
database structure for the new applications resident in the
new workstations. This design change addressed the large increase in the amount of
data that the new system would have to process.

• The reallocation of the revised software functionality between the AN/UYK-43 and the
new processors in the display workstations. The proposal included the revision and
reallocation of the critical engagement and weapons management to functions in the
workstation processor.

Part 6 - Software Measurement Case Studies

Page 408

NAV ESM RADAR SONAR

Workstations

Workstation Control

Threat Evaluation

Target Engagement

Weapons

Communications
Subsystems

System
Displays

AN/UYK-43 Computer
System Control

Surface Control

Target Tracking

External Comms

FDDI LAN

Figure 6a.2-2. The new software development would upgrade

the DDG 51 Weapons System software architecture.

In all, the new software architecture added one major function, Workstation Control, to the
system. The AN/UYK-43 Threat Evaluation function, however, was materially revised
and moved to the workstation processor. The AN/UYK-43 Target Engagement function
was to be completely rewritten and also moved to the workstation. This increased the
number of CIs to 32. The overall amount of software change was significant, but it
reflected the nature of the new concurrent weapons engagement mission requirements.

2.2.3 Award

The PMO-551 primary contact for software measurement, Gary Wilson, was a member of
the source selection team. His analysis of the submitted software measurement data was
an important factor in selecting the winning bidder. Also significant was the quality of the
data in the winning proposal that demonstrated that the developer could objectively identify
and manage software issues using software measurement.

The source selection team developed a number of software measurement indicators to
support analysis of the proposed software development plans. The critical question was
the feasibility of the proposed software development schedule, given the bidder’s estimated
software size and proposed effort profile. This assessment was based on the calculated
software development productivity required to meet the proposed objectives and the
relationship of this required productivity to the bidder’s performance history on previous
programs. Did the proposal indicate, for example, that the bidder would have to improve

Part 6 - Software Measurement Case Studies

Page 409

his demonstrated software productivity significantly to meet his proposed schedule? If so,
was his approach for doing this realistic?

Of equal importance was the relationship between the proposed DDG 51 SCWE software
planning parameters. For example, did the scheduled software development activities peak
while the development staff was being reduced? These were the types of questions the
source selection team was asking.

Gary Wilson developed an indicator that showed the software productivity history of the
two bidders in the competitive range. On the same indicator, he graphed the software
productivity required for the DDG 51 SCWE, based on the measurement data submitted in
each of the proposals (Figure 6a.2-3). The software size estimates were normalized based
on how the developer said the code was to be implemented (COTS, NDI, new, or
modified), and the schedule and effort data was used as it was submitted.

The Software Productivity indicator clearly showed that the successful bidder had
proposed a software productivity rate for the DDG 51 SCWE program that was consistent
with his historical performance. The unsuccessful bidder had proposed a significant
increase over his demonstrated productivity rate, but there was no basis for his claim. In
fact, when the source selection team investigated, it found that the high productivity rate,
as proposed, was tied to an artificially low cost bid in terms of the number of software
development staff that was planned for the development program. In addition, the
historical data submitted by the unsuccessful bidder was inconsistent, with no clear
definitions for how software lines of code, effort, or milestones were measured. The
source selection team requested several clarifications from the bidder, but did not receive
enough information to substantiate the data.

Part 6 - Software Measurement Case Studies

Page 410

Software Productivity
Historical by Bidder

0

20

40

60

80

100

120

140

160

180

200

Successful
Bidder

Unsuccessful
Bidder

S
LO

C
 p

er
 S

ta
ff

M
on

th

Historical - 1
Historical - 2
Historical - 3
Proposal

PMO-551: DDG 51 SCWE Data as of 31 Mar 96

Figure 6a.2-3. The productivity required for development of the DDG 51 SCWE

was calculated from the measurement data submitted in each proposal.

One concern with the successful bidder’s proposal was a somewhat risky 60-month
software development schedule. The source selection team, however, felt that the software
process, as proposed, was capable enough to mitigate this risk.

When assessed with respect to the results of the cost and technical proposal evaluations,
the software measurement results supported award to the higher priced, but more credible
bidder. The successful bidder’s software data was clearly representative of a development
organization that had an established software measurement program embedded into a
mature software development process. This bidder’s measurement process could best
address the software issues and risks associated with the DDG 51 SCWE program.

In May 1996, Captain McLain announced that CDX Systems, Inc. was awarded the
development contract for the DDG 51 Surface Ship Concurrent Weapons Engagement
Upgrade Program.

2.2.4 Negotiations

During contract negotiations, PMO-551 finalized the software development and
measurement plans with the program manager from CDX Systems. There were several
key objectives:

• Re-affirm the software development start date of July 1 1996.

• Define the software development schedule, effort, and sizing plans.

Part 6 - Software Measurement Case Studies

Page 411

• Define clearly which software measures would be applied, how CDX Systems would
define each software measure, and how software measurement data would be
transferred between CDX Systems and the program office.

• Ensure that the subcontractors were consistent in their use of measurement when
reporting to the prime contractor.

The discussions with CDX Systems were extremely important. The developer was able to
make sure that the program office software team had a clear understanding of the software
data they would be receiving. They would understand what the data represented, how it
was measured, and most important, how it related to the CDX Systems software
development process.

Captain McLain asked her staff to evaluate the software plans for feasibility and
consistency. Gary Wilson graphed a set of indicators based on the current CDX Systems
planning data. These indicators are shown in Figure 6a.2-4, Figure 6a.2-5, and Figure
6a.2-6.

Effort Allocation
Planned

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

S
ta

ff
M

on
th

s

SRR
Start of

Bld 1 I&T

PMO-551: DDG 51 SCWE Data as of 31 May 96

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Start of Bld 1
S/W Design

Figure 6a.2-4. The planning data for effort allocation by CDX

Systems, Inc. was independently evaluated for feasibility.

The proposed changes to the existing system resulted in a large increase in the total size of
the software. Almost 700K lines of existing software were retained from the baseline
system. Even with this amount of software reuse, close to one million new lines of code
would have to be written. With the addition of the COTS software components, the total
estimated size of the new system was over 3 million logical lines of code. The software
effort plan showed a traditional staffing profile and was consistent with the overall

Part 6 - Software Measurement Case Studies

Page 412

development activities as scheduled. Overall, software planning data represented a well-
defined software development approach.

Master Software Development Schedule

Activity
Requirements Analysys and Design

Software Requirements Analysys

Software Requirements Review

Preliminary Design

Preliminary Design Review (PDR)

Build 1

Detailed Design

Critical Design Review (CDR-1)

Implementation and Unit Testing

Integration and Test (I&T)

Build 2

Detailed Design

Critical Design Review (CDR-1)

Implementation and Unit Testing

Integration and Test (I&T)

System Test

Test Readiness Review (TRR)

Software Qualification testing

7/1 1/1

1/1

11/1 5/1

5/1

5/1 2/2

2/2

1/1 10/1

4/1 4/1

1/4 9/1

9/1

9/1 6/1

1/3 3/1

2/1

3/1 6/29

Summary Task

Planned Task

Actual Task

Planned Milestone

Actual Milestone

1996 1997 1998 1999 2000 2001

PMO-551: DDG 51 SCWE Data as of 31 May 96

Figure 6a.2-5. The schedule planning data submitted by CDX Systems, Inc. was

independently evaluated for feasibility.

Part 6 - Software Measurement Case Studies

Page 413

Software Size
Estimated Logical Source Lines of Code

Build 1 New Modified Existing Deleted COTS Delivered
SLOC

System Control 20,000 0 305,000 45,000 325,000 605,000

Surface Control 0 0 175,000 0 0 175,000

Target Tracking 5,000 3,000 125,000 0 0 133,000

External Communications 0 0 0 0 0 0

Threat Evaluation 70,000 0 45,000 45,000 0 70,000

Target Engagement 190,000 0 95,000 95,000 0 190,000

Workstation Control 250,000 0 0 0 1,225,000 1,475,000

Build 1 - Total 535,000 3,000 745,000 185,000 1,550,000 2,648,000

Build 2 New Modified Existing Deleted COTS Delivered
SLOC

System Control 0 0 0 0 0 0

Surface Control 0 0 0 0 0 0

Target Tracking 0 0 0 0 0 0

External Communications 30,000 0 110,000 0 0 140,000

Threat Evaluation 215,000 0 135,000 135,000 0 215,000

Target Engagement 210,000 0 125,000 125,000 0 210,000

Workstation Control 0 0 0 0 0 0

Build 2 - Total 455,000 0 370,000 260,000 0 565,000

Total 990,000 3,000 1,115,000 445,000 1,550,000 3,213,000

PMO-551: DDG 51 SCWE Data as of 31 May 96

Figure 6a.2-6. The software size estimates from CDX Systems, Inc. were evaluated

for feasibility by the acquirer.

With the contract negotiations completed, Captain McLain felt that the program plan was
feasible. She also felt that she had a clear picture of the program’s software development
issues:

• The real possibility for growth in the software requirements

• The adequacy and effectiveness of the software development technical approach

• The overall impact of cost and schedule constraints on the ability of the developer to
build quality into the software

• The adequacy of the developer’s software process capability

Part 6 - Software Measurement Case Studies

Page 414

Part 6 - Software Measurement Case Studies

Page 415

CHAPTER 3 - SOFTWARE DEVELOPMENT

After the DDG 51 SCWE contract was awarded, Captain McLain began the complex task
of managing the software development process. Software measurement activities shifted
from evaluating the software plans to tracking performance against those plans. With her
own Navy program organization and CDX Systems, Captain McLain believed she had a
capable software development team - one that could effectively identify and resolve the
expected software development issues and make the program a success.

This chapter explains how software measurement helps identify and objectively analyze the
software issues and shows how the program manager uses the resulting information to
make informed program decisions. For the DDG 51 SCWE program, software
measurement has become an integral part of the Program Management process and
provides PMO-551 with an effective tool for communicating with the developer.

3.1 Tracking Development Performance

3.1.1 Software Measurement Overview

DDG 51 SCWE software development officially started with the kickoff meeting between
CDX Systems and PMO-551 on 1 July 1996. At the kickoff meeting, Captain McLain
explained it was important that her software engineering staff communicate effectively
with the developers at CDX Systems. She also stated her expectation that they take an
integrated team approach to resolving any technical and management issues. Captain
McLain addressed the importance of an effective software measurement process and
emphasized she would use the software data to help manage the program and to identify
problems as early as possible.

CDX Systems presented an overview of their DDG 51 SCWE software development
process and explained how they were going to use software measurement to manage the
progress and quality of the software. The lead CDX software engineer on the program
provided a description of the key characteristics of their measurement program:

• The overall measurement program was applied across all software development
activities at the CI level. A single software measurement database would be created,
with both the contractor and the program office having access. Both would be
managing from the same data and both would have real-time, simultaneous access to
changes. For some measures, such as lines of code, data was collected down to the

Part 6 - Software Measurement Case Studies

Page 416

level of individual units. Per the development contract, PMO-551 would have direct
electronic access to this data.

• For the program, the process for estimating and measuring each software parameter
was defined and was consistent with the CDX approach used for past programs. In
addition, CDX reported that all of the software development subcontractors agreed to
use the same measurement definitions.

• CDX Systems reviewed the DDG 51 SCWE software WBS and showed how the
overall measurement structure was aligned with the defined software activities and
products. They also reviewed their MIL-STD-498 implementation.

• CDX Systems stressed that the measurement process began with the accurate
definition and tracking of both the stated and derived software requirements. They
showed how they were going to measure the total number of requirements and how
they were going to track the allocation of the requirements to the software architecture.

• CDX completed the discussion by reviewing the overall set of measures they intended
to use. The measures themselves were relatively basic, but were implemented within a
well defined process at a meaningful level of detail.

3.1.2 Software Issue Identification and Analysis

During the first year, the program proceeded relatively smoothly. The software
measurement process was in place and Captain McLain received a monthly issue
evaluation from Gary Wilson. The software measurement indicators showed some
variance in the monthly actuals relative to the plans, but there were no major deviations.
The Preliminary Software Design Review, which addressed the CI architectural design,
was completed on 15 June 1997, six weeks behind schedule. Considering the DDG 51
SCWE was a six-year development program, this was only a small schedule slip and did
not cause much concern.

In June of 1997, the Navy decided that the DDG 51 SCWE functional baseline had to be
modified to incorporate a new variant of the surface-launched Tomahawk cruise missile.
The functions required to implement this new missile were added to the Build 1 software
requirements. Since the new missile was added at the beginning of CI detailed design, both
PMO-551 and CDX Systems believed that there would not be any major schedule impact
from the modification.

During the next two months, the software engineering IPT analyzed and documented the
additional requirements and prepared the technical inputs for the Engineering Change
Proposal (ECP). The new Tomahawk variant added approximately 550 additional
requirements and 62,000 source lines of code (SLOC) to the planning baselines. The

Part 6 - Software Measurement Case Studies

Page 417

resultant changes were allocated to 450 new software units. The majority of these
requirements were applicable to the Target Engagement function. The Workstation
Control and System Control functions also had minor revisions due to the new missile.
These new requirements increased both the schedule and technical risk associated with the
Target Engagement function, which had already been assessed as high by both PMO-551
and CDX Systems.

In November of 1997, Gary showed Captain McLain a Build 1 software development
progress indicator based on the number of software units completing detailed design
(Figure 6a.3-1).

Design Progress
Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 30 Nov 97

SDR-P
Start of

Build 1 I&T

Figure 6a.3-1. The indicator for DDG51 SCWE software development

progress showed a lag in detailed design.

The first thing he pointed out was the lag in development progress. The number of units
completing detailed design was significantly behind plan. Yet the Earned Value reports
(Figure 6a.3-2) and the milestone (Gantt) charts (Figure 6a.3-3) showed that the program
was close to being on schedule. There were minor negative cost and schedule variances in
the Earned Value data, but these were not large enough to cause any concern. It later
became clear that the Earned Value was based on too high a level of WBS to provide early
indications of schedule problems. The WBS that CDX Systems had been tracking against
for Build 1 is shown in Figure 6a.3-4.

Part 6 - Software Measurement Case Studies

Page 418

Inital Earned Value Measurement

0

20,000

40,000

60,000

80,000

100,000

120,000

Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

C
os

t (
T

ho
us

an
ds

)
BCWP
ACWP
Budget

PMO-551: DDG 51 SCWE Data as of 31 Dec 97

Figure 6a.3-2. Despite the lag in detailed design, the Earned Value

indicator showed that the program was close to schedule.

Milestone Chart

Activit y
Requirements Analysis

Plan 1

Actual

Preliminary Design

Plan 1

Actual

Detailed Design

Plan 1

Actual

Implementation and Unit Testing

Plan 1

Integration and Test

Plan 1

7/1 1/1

7/1 2/5

11/1 5/1

12/2 7/15

5/1 1/30

7/15 1/30

1/1 10/1

4/1 4/1

1996 1997 1998 1999

PMO-551: DDG 51 SCWE Data as of 31 Dec 97

Figure 6a.3-3. Despite the lag in detailed design, the Schedule Milestone

indicator also showed that the program was close to schedule.

Part 6 - Software Measurement Case Studies

Page 419

1.0 DDG System
1.3 DDG Software

1.3.1 Build 1
1.3.1.1 System Control

1.3.1.1.1 Requirements Analysis
1.3.1.1.2 Design
1.3.1.1.3 Coding and Module Testing
1.3.1.1.4 Component Integration and Testing
1.3.1.1.5 CI Testing
1.3.1.2 Surface Control

1.3.1.2 Target Tracking
1.3.1.3 External Communications
1.3.1.4 Threat Evaluation
1.3.1.5 Target Engagement
1.3.1.6 Workstation Control
1.3.1.7 CI to CI Integration and Testing

1.4 System Engineering
1.4.1 Requirements Engineering
1.4.2 System Architecture
1.4.3 Configuration Management
1.4.4 Release Engineering
1.4.5 Rework
1.4.6 Security Certification and Accreditation

1.5 Testbed
1.5.1 Equipment
1.5.2 Software
1.5.3 Operation

1.6 System Qualification Test
1.6.1 Test Plans
1.6.2 Test Equipment and Software
1.6.3 Test Operations

1.7 System Test and Evaluation
1.7.1 Development Test and Evaluation
1.7.2 Operational Test and Evaluation

1.8 Operational Site Activation
1.8.1 Installation/Integration of S/W System

Figure 6a.3-4. The Earned Value was based on too high a level of WBS to

provide early indications of schedule problems

There was also a comparable WBS for Build 2. Each of the seven configuration items
was broken down into the activities of requirements analysis, design, coding and module
testing, component integration and testing, and CI testing (In the interest of clarity, that
breakout is shown only for the System Control CI). CDX Systems received 50% credit

Part 6 - Software Measurement Case Studies

Page 420

when an activity began and the remaining 50% credit when it finished. Using this
approach, CDX could start many tasks and appear to be on or ahead of schedule. Since
design had begun for all CI’s, progress appeared to be on track. The more detailed
information provided by the work unit progress measure showed that the detailed design of
Build 1 was behind schedule.

Captain McLain tasked the software engineering IPT to work with Gary to develop a more
detailed work breakdown structure that could be used to track Earned Value in a way that
would more accurately reflect schedule and cost deviations at any point in time. They
allocated budgets down to the level of individual software units. The software engineering
IPT worked with each of the configuration item managers to allocate budgets to that level
of detail. An additional three-digit code was added to the time reporting system to identify
each unit. With the more detailed information, the Earned Value Measurement System was
revamped to provide less credit for entering the design phase and more credit given to the
other areas of the design activities. As a result, a new report of Earned Value was
developed as shown in Figure 6a.3-5. This new information identified that the detailed
design was over three months behind schedule and about 40% over cost.

Updated Earned Value Measurement

0

20,000

40,000

60,000

80,000

100,000

120,000

Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

C
os

t (
T

ho
us

an
ds

)

ACWP
Budget
BCWP

PMO-551: DDG 51 SCWE Data as of 31 Dec 97

Figure 6a.3-5. A new Earned Value report showed that the detailed design

was over three months behind schedule and about 40% over cost.

CDX Systems had developed a revised plan that took into account the additional software
units that were added because of the new missile functionality. The new plan called for a
much higher unit design completion rate than originally projected or had been achieved to
date.

Part 6 - Software Measurement Case Studies

Page 421

Gary had discussed this indicator with CDX Systems. They believed that they could meet
the higher unit completion rate projected in their revised plan. They based this assumption
on the fact that they had added 80 new people to the staff over the past few months. CDX
Systems indicated they now had sufficient resources available to complete the software
development within the projected schedule.

In April of 1998, the developer experienced serious and unexpected problems trying to
integrate the COTS products into the DDG 51 SCWE software baseline. Specifically,
CDX Systems ran into the following difficulties:

• The task of integrating the COTS operating system was considerably more
complicated than had been originally anticipated. Performance problems required the
design and implementation of a functional software “shell” between the applications
software and the COTS operating system. This meant that new requirements and code
had to be added to the Workstation Control function.

• Performance problems were discovered while integrating the COTS relational
databases in both the workstation and the AN/UYK-43. The critical ship-to-ship data
items were not being processed quickly enough. The only solution was to revert back
to flat file processing for the critical portions of this data.

With this new set of problems, it was clear that the schedule problem was getting worse.
In fact, the Build 1 Software Design Review covering CI detailed design was delayed for
almost three months.

Captain McLain continued to review the summary level indicators on a monthly basis. In
August 1998, she decided she wanted to see some indicators that could localize the
problem areas to specific software functions. She directed Gary to take a close look at the
current set of indicators to assess program status.

First, Gary constructed a graph, shown in Figure 6a.3-6, showing the growth in
requirements over the past two years. The first point, July 1996, represents the number of
stated requirements that were defined in the contract proposal. Between the beginning of
the contract and June 1997, the number of requirements increased. The majority of this
growth occurred during software requirements analysis, as the CDX system and software
engineers achieved a better understanding of the system functionality and developed the
derived software requirements. The number of requirements increased again between June
and August 1997 due to the addition of the new Tomahawk missile functionality. Between
August 1997 and August 1998, the number of requirements again increased with the
addition of requirements resulting from the problems experienced while integrating the
COTS software.

Part 6 - Software Measurement Case Studies

Page 422

Requirements Stability
Build 1

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Growth due to
Derived Requirements

Growth due to Problems
Integrating COTS Software

Growth due to Addition of
New Weapon Capability

Stated
Requirements

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of

Build 1 I&T

Figure 6a.3-6. The number of DDG51 SCWE software requirements grew

significantly during the software requirements analysis phase.

While it was obvious that the system as a whole experienced significant requirements
growth, Gary also looked at the requirements growth for each of the major software
functions in the system as shown in Figure 6a.3-7. From this breakdown, it became clear
that a large portion of the requirements growth was in the workstation functions. Most of
the requirements growth related to the new missile occurred in the Target Engagement
function. The growth related to problems with the COTS implementation had increased
the number of requirements in the Workstation Control and System Control functions.

Captain McLain also wanted more information about the growth of requirements and the
impact of that growth on product size. From the source data in the PMO-551
measurement database, Gary constructed a software size estimate by software origin
indicator as shown in Figure 6a.3-8. This indicator showed that the requirements changes
had not only increased the projected size of the software, but also had impacted how much
of the software had to be newly developed. The latest plan indicated that more effort and
schedule would be required due to an overall decrease in the estimated amount of non-
developed code.

Captain McLain was also concerned about whether CDX’s software development staffing
levels were tracking to plan and if the amount of effort being applied to the program was
adequate. The next graph Gary showed Captain McLain was the monthly effort data
presented in Figure 6a.3-9.

Part 6 - Software Measurement Case Studies

Page 423

Requirements Stability
By Function - Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

N
um

be
r

of
 R

eq
ui

re
m

en
ts

As of 7/96
As of 6/97
As of 8/97
As of 8/98

Data as of 31 Aug 98PMO-551: DDG 51 SCWE

Figure 6a.3-7. An indicator of requirements growth versus software

functions allowed the acquired to identify the problem areas.

Software Origin
Developed Versus Non-Developed Code

Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Plan 1 Plan 2 Plan 3 Plan 4

S
ou

rc
e

Li
ne

s
of

 C
od

e
(I

n
T

ho
us

an
ds

)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Figure 6a.3-8. The indicator for size estimate by software origin

showed an increase in the amount of new software to be developed.

This graph showed that although the development was initially understaffed, CDX
Systems added additional people to make up for the early deficit. In a subsequent
discussion with CDX Systems, Captain McLain was assured there were enough people to
complete the software development.

Part 6 - Software Measurement Case Studies

Page 424

Effort Allocation

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

S
ta

ff
M

on
th

s
Plan
Actual

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of Bld 1
S/W Design

Start of
Bld 1 I&T

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Figure 6a.3-9. The effort allocation indicator showed that early staffing

problems had been resolved.

Gary then showed Captain McLain an earlier indicator of software development progress
based on the number of units that had completed detailed design as shown in Figure 6a.3-
10. From this indicator, it appeared the rate of units completing detailed design had
increased significantly after the initial lag noticed in November of 1997. The data showed
that all of the units had completed the detailed design milestone within one month of the
revised plan.

While the progress indicator gave Captain McLain some reason for optimism, the problem
report data told a different story. Gary showed Captain McLain a summary of the
cumulative number of total and closed problem reports that had been collected during
integration and test. These are shown in Figure 6a.3-11.

Captain McLain noted that the problem report discovery rate increased rapidly during
integration and test. She was disturbed by the fact that problem report discovery appeared
to be occurring at a much higher rate than problem report closure. She then asked Gary to
show her the problem report data for the individual functions.

Gary calculated defect density by dividing the number of unique valid defects by the new
and modified source lines of code for each function as shown in Figure 6a.3-12. It was
clear that, even when normalized by size, the Target Engagement function was much more
of a problem than any of the other functions. Captain McLain asked Gary to find out
what was going on with this function.

Part 6 - Software Measurement Case Studies

Page 425

Design Progress
Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

N
um

be
r

of
 U

ni
ts

 C
om

pl
et

in
g

D
es

ig
n

Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 31 May 98

SDR-P
Start of

Build 1 I&T

Process Controls
Removed

Figure 6a.3-10. The design progress indicator showed that the early

lag in units completing detailed design problems had been resolved.

Problem Report Status
Build 1

0

200

400

600

800

1000

1200

Mar 98 May 98 Jul 98 Sep 98 Nov 98 Jan 99 Mar 99 May 99

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Discovered
Closed

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Start of
Build 1 I&T

End of
Build 1 I&T

(Plan)

Figure 6a.3-11. The problem report status indicator showed that the problem

report discovery rate increased rapidly during integration and test.

Part 6 - Software Measurement Case Studies

Page 426

Defect Density
Build 1 By Function

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

D
ef

ec
ts

 p
er

 N
ew

/M
od

ifi
ed

 K
S

LO
C

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

N/A

AN/UYK-43
Software

Workstation
Software

N/A

Figure 6a.3-12. The defect density indicator allowed the Target

Engagement function to be identified as the most significant problem.

Gary visited CDX Systems and met with the software engineering manager to discuss the
workstation CI problems. He discovered that as of January 1998, unit design and code
inspections had been discontinued in an effort to complete the development activities as
quickly as possible. The delays in software development progress had begun to impact the
software testing process. Successful completion of the unit design and code inspections
had been the primary exit criteria for measuring unit development progress. With this
requirement relaxed, the software developers were not required to adhere to a key process
activity that would ensure that only complete, high-quality units were delivered for
integration. In effect, the quality of the software became secondary to meeting the
schedule and the measurement indicators had helped to identify the problem.

Most of the software units impacted by this process change belonged to the Target
Engagement function. This explained the sudden increase in apparent software
development progress based on the number of units completing detailed design. It also
explained the large number of problem reports being discovered in integration and test.
Defects that should have been found during those inspections were not being discovered
until later. In his discussions with CDX Systems personnel, Gary also found out that the
majority of the recently added personnel were working on problem corrections and rework.
It was clear that, by removing the process controls, CDX had only made the situation
worse.

By this time, Captain McLain had serious doubts about the likelihood of completing Build
1 on schedule. In examining the schedule revisions, as shown in Figure 6a.3-13, she noted
that CDX Systems made a series of periodic minor revisions to the DDG 51 SCWE

Part 6 - Software Measurement Case Studies

Page 427

detailed milestone schedule. No changes to any intermediate milestone were made until it
was obvious that the completion date for that milestone would not be met. Even when
revisions were required, CDX Systems made only small incremental changes, rather than
doing a comprehensive analysis to determine when the activities could realistically be
completed. While completion estimates for the detailed milestones had slipped, the
completion of integration and testing for Build 1 had not been adjusted. The result was an
integration and test schedule that was becoming less and less realistic.

Captain McLain began to realize that she might have to reassess the current DDG 51
SCWE software development plan. Her suspicions were confirmed when she looked at the
achieved productivity to date for Build 1. It did not appear that CDX Systems would be
able to produce the planned amount of code for Build 1 within the current schedule. After
reviewing the analysis results with the CDX Systems program manager, Captain McLain
decided to replan the software development effort.

Revised Software Development Schedule

Activit y
Requirements Analysis

Plan 1

Plan 2

Actual

Preliminary Design

Plan 1

Plan 2

Actual

Detailed Design

Plan 1

Plan 2

Plan 3

Actual

Implementation and Unit Testing

Plan 1

Plan 2

Plan 3

Actual

Integration and Test

Plan 1

Plan 2

Plan 3

7/1 1/1

7/1 1/31

7/1 2/5

11/1 5/1

12/2 5/15

12/2 7/15

5/1 1/30

5/15 2/13

7/1 3/31

7/15 4/24

1/1 10/1

2/16 10/15

4/1 1/13

4/27 1/20

4/1 4/1

5/8 4/1

7/15 4/1

1996 1997 1998 1999

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Figure 6a.3-13. The indicator for the integration and test schedule

showed that it was becoming less and less realistic.

Part 6 - Software Measurement Case Studies

Page 428

3.2 Revising The Development Plan

In October of 1998, Captain McLain met with the PMO-551 staff and with managers from
CDX Systems to replan the remainder of the DDG 51 SCWE project. Two options were
considered:

• Moving software functionality from Build 1 to Build 2.

• Adding another build, Build 3, and balancing software functionality between the
builds. Under this option, Build 1 and Build 2 were revised so that each would contain
an equal amount of code, while a smaller amount of code was integrated into Build 3.
Most of the code that was shifted to a later build was from the Target Engagement
function. This was the highest risk function and had the most problems with respect to
development progress and quality. The Threat Evaluation and Workstation Control
functions also had a small amount of code shifted between the builds.

Captain McLain asked Gary to evaluate the feasibility of each of these two options as
shown in Figure 6a.3-14.

Software Productivity
Replan Analysis

0

20

40

60

80

100

120

140

160

180

Actuals
to Date

Original
Plan

Replan
Option 1
(2 Builds)

Replan
Option 2

(Add Build 3)

S
LO

C
 p

er
 S

ta
ff

M
on

th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SCWE Data as of 31 Oct 98

Figure 6a.3-14. The indicator for software productivity allowed the acquirer to

evaluate the feasibility of a new plan for the DDG 51 SCWE project.

The first replan was rejected because of the high productivity requirement for Build 2.
This option required the productivity of Build 2 to be higher than what had been achieved
to date on Build 1. This requirement was assessed to be unrealistic. Implementing this
option would most likely have resulted in a second replan later in the development cycle.

The second option was selected because of several favorable elements:

Part 6 - Software Measurement Case Studies

Page 429

• The required productivity for each remaining build was based on CDX Systems’
achieved software productivity to date on DDG 51 SCWE.

• This option supported the original delivery schedule of 1 July 2001, although with
reduced functionality. An additional delivery was added for September 2002, 14
months after the original delivery. This additional delivery would include all of the
required functionality.

• This option was based on the current staffing resources available to the DDG 51
SCWE program. No additional personnel would be required for this approach. It was
believed that adding more people at this point in the development would only delay the
delivery further.

• Although the schedule was extended by 14 months and additional funding had to be
identified, the revised plan was realistic and contained no major risks.

When PMO-551 presented the replan to the Navy, the measurement analysis results helped
to clarify the situation and showed that PMO-551 had an objective understanding of the
software development constraints and issues.

As part of the replan, CDX Systems assured the program office that all process controls
would be reinstated, including the unit design and code inspections.

3.3 Software Delivery

After the replan, Captain McLain and Gary continued to monitor the DDG 51 SCWE
project. Captain McLain believed that two issues needed to be monitored more closely.
First, she wanted to ensure that the requirements were being verified at a sufficient rate to
meet the delivery schedule. Secondly, Captain McLain wanted to assess the adequacy of
CDX Systems’ integration and testing process.

To address the requirements issue, an indicator depicting the number of software
requirements that had been successfully verified during integration and test was developed
as shown in Figure 6a.3-15. Progress was steady, which told the program office that the
planning revisions were effective. CDX Systems was producing the software in
accordance with the revised schedule and was projected to meet all delivery requirements.

The quality of the software had also improved. The problem report discovery rate had
begun to decrease, and even with the increased test activity, CDX was finding fewer
serious problems as shown in Figure 6a.3-16.

Part 6 - Software Measurement Case Studies

Page 430

Requirements Successfully Tested
Total System

0

5,000

10,000

15,000

20,000

25,000

Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01 Jan 02

N
um

be
r

of
 R

eq
ui

re
m

en
ts

Total

Successfully
Tested

PMO-551: DDG 51 SCWE Data as of 31 Jul 02

SRR

Start of
Build 1 I&T Start of

Build 2 I&T
Start of

Build 3 I&T TRR

Figure 6a.3-15. The indicator for the number of software requirements

successfully tested showed that the planning revisions were effective.

Problem Reports Versus Test Cases Completed
Total System

0

10

20

30

40

50

60

70

80

Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01 Jan 02

N
um

be
r

of
 T

es
t C

as
es

0

50

100

150

200

250

300

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Test Cases
Attempted

Problem Reports
Discovered per Period

PMO-551: DDG 51 SCWE Data as of 31 Mar 02

Figure 6a.3-16. The problem report discovery rate verified that the

quality of the software had also improved.

Part 6 - Software Measurement Case Studies

Page 431

3.4 Epilogue

Builds 1 and 2 were delivered on schedule. Figure 6a.3-17 shows the actual productivity
achieved for those builds along with the productivity observed for Build 3 as of March
2002. Actual productivity increased across the three builds, contributing to the on-time
delivery for each build.

Software Productivity
Performance Summary

0

20

40

60

80

100

120

140

160

180

Actuals
to Date

Original
Plan

Replan

S
LO

C
 p

er
 S

ta
ff

M
on

th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SCWE Data as of 31 Mar 02

Figure 6a.3-17. The productivity achieved in each successive

software build improved.

In September of 2002, the PMO-551 / CDX Systems, Inc. team deployed the DDG 51
Surface Ship Concurrent Weapons Engagement Upgrade system on the USS John Paul
Jones, DDG 53. Although the issues related to the software development were significant,
use of software measurement had helped the program manager to make objective and
informed decisions that led to the program’s ultimate success.

Part 6 - Software Measurement Case Studies

Page 432

Part 6 - Software Measurement Case Studies

Page 433

INFORMATION SYSTEM CASE
STUDY

PART 6B

Part 6 - Software Measurement Case Studies

Page 434

Part 6 - Software Measurement Case Studies

Page 435

INFORMATION SYSTEM CASE STUDY

The information system case study describes the development of a military personnel
information system for the U.S. Air Force. This example addresses the use of
measurement on a project that has been under development for some time. The project
recently failed a major acquisition milestone review, and measurement is seen as a way
to gain an increased level of control over the software development effort. The system is
being developed by an organic Air Force activity working for a Program Manager within
the same command. The development addresses current DoD initiatives to promote open
systems, interoperability, and the use of commercial-off-the-shelf (COTS) software
packages. The technical approach includes the use of multiple languages, including
code generators, and conversion of existing data structures. The critical issues are
largely driven by external development dependencies. They include the need to meet
aggressive development and deployment schedules, and the requirement that the overall
readiness of the software for deployment be objectively determined.

Th information system case study is organized into four chapters:

• Chapter 1, Project Overview - describes the technical and management aspects of
the software development effort.

• Chapter 2, Getting the Project Under Control - shows how measurement can be
implemented on an existing project to define a realistic software development plan,
and subsequently how to track the development against that plan.

• Chapter 3, Evaluating Readiness for Test - illustrates how measurement helps to
objectively determine if the software is ready for operational test and subsequent
deployment.

• Chapter 4, Installation and Sustaining Engineering - shows how measurement is
used after the system is fielded to identify and correct user problems.

Part 6 - Software Measurement Case Studies

Page 436

Part 6 - Software Measurement Case Studies

Page 437

CHAPTER 1 - PROJECT OVERVIEW

This chapter introduces the information system project scenario and illustrates the
technical and management aspects of the development effort. The project scenario
describes the implementation of a measurement process on an existing project. Special
consideration is given to using software measurement data that is readily available within
the established software and project management processes. The example project is
representative of a typical information system project under development to meet business
process reengineering objectives.

1.1 Introduction

Over the past several years, Ridgway Air Force Base in Cheyenne, Wyoming, has become
established as a primary source for the development of Air Force business information
systems. The software development group at Ridgway began as an organic software
maintenance organization, and has successfully transitioned its business base from the
support of Air Force logistics and administrative systems to software system reengineering
and development. Ridgway has benefited from the recent DoD emphasis on upgrading
existing information systems into an integrated set of more manageable, cost-effective
resources, and has become an important resource in the Air Force Materiel Command.

In 1993, the Air Force designated Ridgway Air Force Base as the lead development
organization for the Military Automated Personnel System (MAPS). MAPS represented
the Air Force's “next generation” military personnel information system. The project was
part of a larger initiative to reengineer the Air Force's administrative business processes.
The reengineering plan included service-wide initiatives to modernize information system
hardware, software, and communications interfaces at both the base and headquarters
levels. Existing mainframes and terminals were to be replaced by client/server
architectures, and new capabilities were to be implemented by adapting existing databases
and integrating them with newly developed applications software. MAPS was an
important link in this business system modernization effort, since it was the first part of the
overall system to be developed and delivered. MAPS was scheduled to be deployed at a
number of Air Force bases during 1997. Needless to say, MAPS was an important, and
highly visible project.

In 1995, MAPS had been under development for two years. During that time, the
Ridgway software development group had tried to keep current with changing DoD
acquisition policy and related software initiatives. These included the definition of open
systems architectures, the integration of commercial-off-the-shelf (COTS) software
components, and the use of advanced programming languages and tools.

Part 6 - Software Measurement Case Studies

Page 438

In November 1995, a new Program Manager was assigned to the MAPS project. Air
Force Lt. Col. Barry Thompson was a 1978 graduate of the Air Force Academy. His
background included four years with the Air Force's Operational Test & Evaluation Center
and eight years in various Air Force system program offices. His last assignment was as
the Deputy Program Manager for a major upgrade to an Air Force maintenance data
system.

Lt. Col. Thompson’s assignment to the MAPS project did not come under the best of
circumstances. At the time of his arrival, MAPS had just undergone an unsuccessful
review by the DoD's oversight committee for major information systems, the Major
Automated Information Systems Review Council (MAISRC). MAPS had failed to receive
a Milestone III approval for system production and deployment. This was largely a result
of problems with the software, especially with respect to the amount of completed
functionality and the overall quality of the existing code. The MAISRC report indicated
that there was little confidence in the cost and schedule estimates presented by the previous
Program Manager in an effort to substantiate his development plan. There was also a lack
of available data to show the MAISRC how the Program Manager was addressing the key
MAPS software development issues.

Lt. Col. Thompson arrived at Ridgway with clear direction to get the project under control
and to establish an objective, credible plan for the remainder of the development. Lt. Col.
Thompson’s first task was to review the overall technical and management characteristics
of the project. He wanted to identify the events and decisions that had helped to shape the
project to identify the key software issues and problems that he needed to address.

1.2 Air Force Business Process Modernization Initiative

In reviewing the MAPS project history with the Ridgway development team, Lt. Col.
Thompson learned exactly how MAPS fit into the Air Force Business Process
Modernization Initiative. MAPS was the first application to be developed and was
intended to reengineer the existing military personnel information system currently in use
throughout the Air Force. Subsequent applications which were to be integrated as part of
the initiative included revised supply, finance and accounting, medical, payroll, and base-
level maintenance functions. The scope of the initiative was significant. In addition to the
upgrade of the base-level business functions, the new applications were required to support
a seamless interface at the headquarters level. Thus, almost all key Air Force information
systems would be impacted in one way or another.

Lt. Col. Thompson noted several key features of the Air Force Business Process
Modernization Initiative:

Part 6 - Software Measurement Case Studies

Page 439

• Client/Server Architecture - The existing mainframe computers and associated video
display terminals were to be replaced by client/server architectures at each base and at
each command headquarters.

• Open Systems - The current dependence on vendor-specific, proprietary operating
systems and database management systems was to be replaced by open system
standards-based architectures. A POSIX-compliant operating system had been
selected as part of the software architecture for MAPS and the other Air Force
information systems that were to be reengineered.

• Standard Data Elements - The efficient flow of data from one DoD information
system to another was an important objective of the initiative. In order to achieve a
high level of interoperability, the revised Air Force systems, including MAPS, had to
adhere to a standard set of data definitions. The Defense Information Systems Agency
(DISA) was responsible for control of the data standardization effort.

• Process Modeling - All of the business processes which fell under the modernization
initiative were required to be modeled using the ICAM definition language (IDEF).
This modeling effort was important to ensure the efficiency and interoperability of the
various information systems that would be reengineered as part of the initiative.

• Integrated Databases - An important aspect of the modernization initiative was the
intent to move away from “stove-piped” business applications, each with its own
database and unique application characteristics. Therefore, MAPS had to include an
integrated database that could be accessed by the various user applications using a
common data interface. The intent was for any given data element to be entered only
once at the point of origination. The data would then be made available to other
applications. Development and control of the logical and physical data models rested
with DISA, and again the MAPS design had to comply with higher-level requirements.

• Maximum use of COTS Software Components - The use of commercial software
packages was strongly encouraged. As part of the modernization initiative, special
waivers had to be obtained to develop unique software applications if a commercial
counterpart that met the defined requirements was available.

• Technical Architecture Framework for Information Management (TAFIM) - All
of the revised information systems that comprised the modernization initiative,
including MAPS, were required to be designed and implemented in accordance with
the DoD TAFIM. They were required to demonstrate Level-3 compliance with the
Defense Information Infrastructure Common Operating Environment (DII COE).

Part 6 - Software Measurement Case Studies

Page 440

1.3 Project Description

Lt. Col. Thompson's staff briefed him on the key project events and the technical and
design characteristics of the MAPS project. MAPS began in the summer of 1993. It had
been under development since that time by the Air Force's Administrative Systems
Development Activity at Ridgway Air Force Base. All of the personnel involved in the
MAPS development effort were organic to the activity. That is, they were either civilian or
military personnel directly employed by the Air Force. The system and software
requirements, and high-level design were defined during the first year of the MAPS
development. In November 1995, a briefing was given to the DoD MAISRC oversight
group to support a Milestone III decision. Serious concerns were voiced by the members
of the group during the briefing. The major issues focused on the development of the
MAPS software and included the following:

• The original software development schedule had been slipping on an incremental basis.
The revised “get well” schedule presented by the previous Program Manager appeared
to be unrealistic, and could not be substantiated based upon the development
performance to date.

• Similar to the schedule issue, there was no credible basis for the cost projections
presented to the MAISRC. It appeared to the MAISRC that the cost of the software
was driven by the number of development personnel available, not by the size and
capability of the software that had to be developed.

The original MAPS development plan called for two incremental deliveries of the required
capability. When Lt. Col. Thompson arrived at Ridgway in November 1995, the software
for the first incremental release was under development.

MAPS began under a tailored MIL-STD-7935A software process and was transitioning to
MIL-STD-498. The software development languages included both Ada 95 and C.
Development tools included a state of the art Ada programming support environment, a
screen generator, and a report generator. A COTS relational database was also an integral
part of the design.

The MAPS software design included twenty four functionally defined Configuration Items
(CIs). Thirteen of these were allocated to Increment 1 of the development and nine were
allocated to Increment 2. The remaining two CIs were data conversion software. For each
of these CIs, access to the database was to be implemented using SQL. User access and
interface was designed to be implemented using predefined, “user friendly” screens. Site
operators had additional access using SQL. The user interface was to be developed using
X-Windows and was designed to be MOTIF compliant.

Part 6 - Software Measurement Case Studies

Page 441

1.4 System Architecture and Functionality

The primary objective of the MAPS project was to reengineer the existing Air Force
military personnel information system to add new functionality and to meet the overall
integrated system requirements defined by the Business Process Modernization Initiative.
To fully understand the technical implications of migrating the existing system to the new
design, Lt. Col. Thompson compared the architecture and functionality of the current
military personnel system with the MAPS requirements and specifications.

1.4.1 Current Personnel System

Figure 6b.1-1 shows the hardware architecture for the current personnel system. The
current system is actually two separate information systems. One resides at the base level
and the other at command headquarters. Both the base level and the headquarters
implementations were based on the use of mainframe computers and video display
terminals. The applications for both legacy systems were written in COBOL and included
hierarchical databases. Both incorporated character-oriented, non-graphical user
interfaces.

The operating concept of the current system included periodic data transactions from the
base-level system to the headquarters-level system. Selected data was uploaded to
headquarters every 24 hours. As with many legacy information systems, the current
military personnel implementation had experienced a significant number of problems with
respect to inconsistent edits between the two systems. Part of this was attributable to the
base-level system requiring very loose edits, while the edits for the headquarters system
were much more constrained. Consequently, there was a large rejection rate for data that
was uploaded to the headquarters system. As such, data was often lost in the transaction
process.

To access data at the base level from the headquarters database, users had to log in and
connect to the system over standard phone lines. This access approach had proven to be
unreliable and added to the problems associated with transferring data.

Part 6 - Software Measurement Case Studies

Page 442

Base 1

HPS

Base 3

Base 2

Base 1

BPS

Mainframe-based
Computer System

Base Personnel System (BPS) Headquarters Personnel System (HPS)

Mainframe-based
Computer System

Nightly

Figure 6b.1-1. The primary objective of the MAPS project was to reengineer the

existing Air Force military personnel information system.

1.4.2 Military Automated Personnel System (MAPS)

The hardware architecture for MAPS is shown in Figure 6b.1-2. MAPS is designed as a
single integrated personnel system that incorporates real time data updates and access
between the base-and headquarters-level system implementations. The headquarters
portion of the system incorporates a mainframe computer that is used only for data
storage. It is part of the headquarters local area network (LAN). MAPS incorporates a
client/server design at both the base and headquarters levels. Data transfer between the
levels is provided by a designated MILNET interface.

The MAPS client/server architecture integrates Graphical User Interface (GUI) and
display functions on individual PCs, while the shared application functions reside on a
UNIX-based server. This design is applicable at both the base and headquarters levels.

When MAPS is initially fielded at each Air Force base, it will be required to interface with
the existing base-level information systems. These systems will gradually disappear as the
Business Process Modernization Initiative progresses. As each existing information
system is reengineered and integrated into the overall information system structure, all
base-level applications will transition to a common enterprise architecture with access to a
common database. As with MAPS, all interaction between applications will then occur
through the shared database.

Part 6 - Software Measurement Case Studies

Page 443

Mainframe

Base 1
Base 2

Base 3

Base Functions
(Increments 1)

Server Server

Headquarters

MILNET

Figure 6b.1-2. The MAPS system architecture is actually two

separate information systems.

The MAPS design incorporates two functional subsystems. As expected, these include the
base-level functional subsystem and the headquarters-level functional subsystem. The
base-level subsystem includes those standard functions that support the military personnel
assigned to individual bases, or to commands, such as individual aircraft squadrons, that
are resident on base. The type of personnel data that must be available from MAPS at the
base level includes individual information on each officer and enlisted person assigned to
the base. These data include age, rank, skill level, training history, individual personnel
assignment and promotion history, and information pertinent to past performance
evaluations. The base-level MAPS subsystem also contains personnel information at the
command level, such as squadron mobilization personnel requirements, casualty data, skill
profiles, and personnel replacement priority information.

The MAPS headquarters subsystem includes military personnel functions that generally
support higher-level information requirements than those needed at the base level. The
headquarters subsystem provides information that supports overall force mobilization,
strategic planning, and analysis of force manpower requirements. For example, if a senior
Air Force commander wants to deploy an offensive air superiority fighter such as the F15-
E, the headquarters subsystem can provide information about the location of each F15-E
squadron, and the availability and training history of the pilots, maintenance personnel,
and other support crew. If the Air Force needed to plan for night air sorties into
mountainous terrain, MAPS would help identify those squadrons with the appropriate
qualifications.

The overall MAPS development plan called for the subsystems to be developed and
delivered in separate increments. Increment 1 would include the base-level functions, and
Increment 2 would include the Headquarters functions. In addition to development of the
respective increment functionality, MAPS required that the data from the current military

Part 6 - Software Measurement Case Studies

Page 444

personnel information system be converted and entered into the redesigned MAPS data
structures. As such, the MAPS software development effort included the development of
data conversion software for both the base-level and the headquarters-level databases.

Part 6 - Software Measurement Case Studies

Page 445

CHAPTER 2 - GETTING THE PROJECT UNDER CONTROL

After his review of the MAPS development effort, Lt. Col. Thompson knew that he was
facing a big challenge. A detailed review of the software development and management
processes revealed that the project was essentially being run with milestone schedules and
viewgraphs. By mid-1995, the software development schedule milestones had begun to
slip on a regular basis. Although this was evident in the milestone charts, no action was
being taken to identify and correct the underlying causes. An analysis of the problem
report data in the configuration management database showed that many more software
problem reports were being opened than were being closed. All of the available personnel,
as it was explained to him, were assigned to implementing and testing the code to meet the
defined schedule for Increment 1. There wasn’t enough time to keep up with the problem
fixes at this stage of the development.

To gain control over the MAPS software, Lt. Col. Thompson had to address two key
issues. The primary issue was software development schedule and progress. Lt. Col.
Thompson had to assess the feasibility of the current schedule, and determine why
performance against the schedule was lagging. Second, he had to address the overall
product quality of the developed software products. Based upon past experience, Lt. Col.
Thompson knew that the software defects represented in the open problem report backlog
had a lot to do with the schedule pressures. The schedule had also limited the time spent
resolving and closing problems. Given the increased visibility of the project after the
results of the MAISRC review, Lt. Col. Thompson knew that the system had to work
correctly when it was initially fielded.

By this time, it was clear to Lt. Col. Thompson that he needed better and more detailed
information to manage the critical software issues. To help him get the information, he
assigned one of the members of his project staff, Jennifer Cooper, as the MAPS software
measurement lead. Ms. Cooper had previous experience with implementing a
measurement process, but this would be the first time she had to tailor and apply
measurement for an existing project. Ms. Cooper met with Lt. Col. Thompson to identify
and prioritize the major software issues to be addressed by the measurement effort.

From the discussion, it was clear that Lt. Col. Thompson would give the measurement
activities a high priority. He intended to use the measurement results to help get the
project back on track, and also to show senior management how the project was
progressing.

Lt. Col. Thompson and Ms. Cooper discussed the potential problems related to
implementing measurement on an existing program. Although all of the measurement data
that they wanted would not be immediately available, they felt that they had enough basic

Part 6 - Software Measurement Case Studies

Page 446

information to start to address the key issues. They both decided that it would be a good
idea to review the software measurement results on a weekly basis.

As one major step in gaining control of the MAPS development, Lt. Col. Thompson put
together an Integrated Product Team (IPT) consisting of representatives of a number of
organizations associated with MAPS. These included the base-level and headquarters user
communities, the designers, the test and integration organization, quality assurance, and
installation personnel. Ms. Cooper was also a member of the IPT. The IPT’s task was to
identify and prioritize the risks to the project. The major risk they identified was in
converting the existing databases to the shared relational database that would be accessed
not only by MAPS but by future applications as well. Their concerns were two-fold: That
the existing data would be so error-prone that it would make the conversion process labor-
intensive and would result in a schedule slippage. They estimated the probability of this
occurring at 0.5, and the impact to increase the effort as well as schedule. Without more
information, they viewed their probability estimate as a guess more than anything else.
They also could not come up with a precise impact estimate. The other risk they identified
was that the process of data standardization that was necessary to make the shared data
concept a reality would get bogged down in organizational battles. They estimated the
probability that this would happen as 0.70. There was currently high-level support within
the Air Force and within DISA for data standardization. Their concern was that this could
change with personnel changes in the future. They estimated the impact on MAPS as
minor. The real impact would be on the Air Force vision of data sharing and
interoperability.

The IPT met with Lt. Col. Thompson and recommended two risk mitigation strategies: To
handle the error-prone data, they suggested that very close attention be paid to the first few
data conversion efforts. The IPT felt that this would give them a much better sense of the
extent of the problem and they could replan for more manual effort in the conversion phase
if necessary. For the risk related to the data standardization effort, they suggested that the
MAPS project take a proactive approach to working with other Air Force organizations
and with DISA in identifying shared data and in reaching a consensus on the data model
and data elements. They also identified a middleware package to use in translating
between the MAPS data and the other databases if it turned out to be necessary.

Lt. Col. Thompson gave the IPT the go-ahead to implement these recommendations. He
asked Ms. Cooper to develop a means to quantify the extent of any problems related to
data conversion. This quantitative data would be used as an objective basis to change the
plan, if that proved to be necessary.

Part 6 - Software Measurement Case Studies

Page 447

2.1 Evaluating the Software Development Plan

When Lt. Col. Thompson reviewed the MAPS development plan, he tried to identify how
the original schedules and staffing requirements had been established. The most detailed
schedule information that was available was in the form of Gantt charts showing major
project milestones and dates. There was little detail with respect to the low-level MAPS
software development activities and associated CI development tasks. There was a project
Work Breakdown Structure (WBS), but it seemed to apply only loosely to the current
tasks. It appeared that the overall development schedule was driven by the required
delivery date of the system. Key development activities were scheduled very optimistically
to meet the delivery date.

There was no MAPS staffing plan that allocated personnel resources to specific software
development tasks. A total of 40 software personnel were assigned full time to the MAPS
project. All were available through the planned delivery date for Increment 2. The people
were being applied to the project on a level of effort basis.

The first question Lt. Col. Thompson had to answer was whether or not the original
MAPS software schedule was realistic, given the projected level of staffing and the overall
performance of the development team to date.

Lt. Col. Thompson asked Ms. Cooper to generate an independent schedule estimate based
upon the size of the software and the expected software productivity. Although this
sounded like a straightforward request, Ms. Cooper understood that the characteristics of
the project required two separate sets of analysis. There were two different “types” of
software development taking place, each described by distinct development approaches.
These included:

• Development of the application software for both incremental deliveries. This
development effort was based on the use of a commercial database, SQL, Ada, and
screen-generation and report-generation tools.

• Development of the data conversion software. This development effort could best be
described as a “typical” support software development effort using a high order
language with minimal process requirements.

Ms. Cooper needed to estimate the size of the software to be developed in order to generate
a new estimate of the MAPS development schedule. For now, Ms. Cooper was concerned
with developing the MAPS application software and the software for data conversion. She
decided to use function points as the basic size measure for the Increment 1 and 2
application software because of the mix of languages (Ada, SQL, code generators). Ms.
Cooper used two methods to calculate the required productivity figures. In addition to a
simple functional size to effort ratio, Ms. Cooper used a software cost model that accepted

Part 6 - Software Measurement Case Studies

Page 448

function points as a data input. The model also took into account the productivity impact
of language type and reused code.

For the data conversion software, Ms. Cooper decided to use lines of code to estimate the
size of the software. In this case, lines of code seemed a better choice because she was not
readily able to convert the sizing information to function points.

Ms. Cooper spent several weeks with the development team to arrive at the function point
counts and the lines of code estimates. The function point counts were based upon the
methodology defined in the Function Point Counting Practices Manual from the
International Function Point Users Group (IFPUG). Estimates of source lines of code
were generated for each of the application functions by the responsible team leaders. Ms.
Cooper summarized the sizing results for Lt. Col. Thompson on the table shown in Figure
6b.2-1.

The information showed the size for each of the CIs in Increments 1 and 2. The table also
showed the primary language and the projected number of low-level design components or
units.

The relational database and the Ada to SQL bindings inherent in the MAPS design were
relatively new COTS software products. Input screens and reports were generated by
4GLs.

Ms. Cooper’s projections indicated the following:

• The minimum schedule to develop both functional increments is four months longer
than the current planned development schedule.

• In order to meet even the extended schedule, the MAPS development staffing levels
would have to be significantly increased.

Although these analysis results were expected, they indicated that Lt. Col. Thompson
would have to replan the remainder of the MAPS project to define a more realistic
development plan.

2.2 Revising the Software Development Plan

Lt. Col. Thompson used the cost model estimates as the basis for a revised software
development plan. He asked Ms. Cooper to show the new schedule in the form of a Gantt
chart. This revised schedule is shown in Figure 6b.2-2.

The revised schedule began with the completed activities. The system requirements and
high-level design activities were ongoing from July 1994 through May 1995.

Part 6 - Software Measurement Case Studies

Page 449

SOFTWARE SIZE ESTIMATES

Configuration Item Abbr. Language Number
of Units

Size
(Function

Points)

Increment 1 - Base Level Functions

1. Personnel Information BPI 58 429
2. Assignments BAS 36 227
3. Availability (TDY, etc.) BAV 12 71
4. Unit Training BUT 20 114
5. Unit Skills Inventory BUS 34 223
6. Security Clearances BSC 15 138
7. Performance Evaluations BPE 41 252
8. Promotions BPR 37 154
9. Unit Mobilization BUM 51 390

10. Unit Reenlistments BUR 17 92
11. Casualty Reporting BCR 23 109
12. Unit Replacement Priorities BUP

Ada,
SQL, and

code
generation

27 147
13. Personnel Database (Base level

entities)
BPD COTS 450

Increment 1 Total 371 2,796

Increment 2 - HQ Functions

1. Organization Master HOM 33 189
2. Force Training HFT 28 141
3. Force Skills HFS 22 123
4. Manpower Requirements HMP 55 375
5. Manpower Authorization HMA 21 115
6. Force Replacement Priorities HFP 30 170
7. Strategic Planning HSP 47 320
8. Force Mobilization HFM

Ada,
SQL, and

code
generation

65 392
9. Personnel Database (HQ-level

entities)
HPD COTS 210

Increment 2 Total 301 2,035

Configuration Item Abbr. Language Number
of Units

Size
(SLOC)

Data Conversion Programs

1. Base-level BDC C 10 9,500
2. HQ-level HDC C 7 6,000

Conversion Total 17 15,500

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 6b.2-1. The MAPS software size indicator showed that the minimum development

schedule is four months longer than the current plan.

Part 6 - Software Measurement Case Studies

Page 450

Software Development Schedule

Task Name
Total System

Software Requirements

Preliminary Design

Increment 1

Detailed Design

Coding and Unit Test

Software Integration and Test

System Integration and Test

Operational Acceptance Test

Data Conversion Software

Installation

Increment 2

Detailed Design

Coding and Unit Test

Software Integration and Test

System Integration and Test

Operational Acceptance Test

Data Conversion Software

Installation

7/1 1/2

1/2 5/1

5/1 11/1

11/1 3/15

2/1 5/1

5/1 8/30

8/30 12/31

11/1 3/15

1/2 10/1

1/2 6/3

6/3 8/30

9/2 1/2

1/2 4/1

4/1 8/1

6/3 8/30

8/1 9/1

Summary Task

Planned Task

Actual Task

Planned Milestone

Actual Milestone

1994 1995 1996 1997

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 6b.2-2. The MAPS development staffing levels would have to be

significantly increased to meet the extended schedule.

Top level requirements and design were completed early in the development effort for the
entire system. With these activities complete, the revised schedule called for the
independent development of the application software in two parallel increments as
previously defined. The development of each increment included detailed design, coding,
and integration and test.

The detailed design for Increment 1 was completed in November of 1995. Increment 1
was to be fielded by the end of 1996. Detailed design for Increment 2 was scheduled to
begin in early 1996. Increment 2 was scheduled for delivery in mid 1997. The data
conversion software was scheduled for parallel development with the respective functional
increments. Data conversion and installation was scheduled to occur over a ten-month
period for Increment 1 and a one-month period for Increment 2.

Lt. Col. Thompson identified two major development activities on the critical path. These
were the Personnel Information CI for the Base-level subsystem and the data conversion
software for both functional increments. The “Personnel Information” CI was critical
because it has to be completed before the other CIs could be integrated and tested. The
data conversion software was critical because it was needed to convert the existing
databases at each base and at headquarters. The data conversion effort had already been
identified as a high-risk item by the IPT. The data conversion software had to be
completed, and had to work properly, before the MAPS increments could be fielded. Lt.
Col. Thompson decided to track these critical-path items closely.

The results of the productivity analysis were also used as the basis for the revised MAPS
staffing plan. The projected effort allocations for Increment 1 and Increment 2 were

Part 6 - Software Measurement Case Studies

Page 451

graphed as shown in Figure 6b.2-3. When Lt. Col. Thompson reviewed the incremental
effort allocation, he noted that the peak full time staffing requirement did not exceed 35
people. Since the schedule called for the MAPS increments to be developed in parallel, Lt.
Col. Thompson asked Ms. Cooper to generate a system level effort allocation graph. This
graph is depicted in Figure 6b.2-4.

Effort Allocation
Planned

0

5

10

15

20

25

30

35

40

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97

S
ta

ff
M

on
th

s

Requirements and
Preliminary Design

Increment 1 Increment 2

SSR PDR CDR (1) CDR (2)
End of

OAT (1)
End of

OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 6b.2-3. The number of people currently assigned to the MAPS

development team was not adequate to meet the peak staffing requirements.

When Lt. Col. Thompson looked at the total system effort profile that aggregated the
individual effort requirements, several things became apparent. It was clear that the
number of people currently assigned to the development team was not adequate to meet the
peak staffing requirements that would occur in 1996. Even more important, the level
staffing profile of 40 people did not meet the needs of the project. The development had
been inefficiently overstaffed through 1995, and was then projected to experience shortfalls
as both Increments 1 and 2 were under development in 1996.

Part 6 - Software Measurement Case Studies

Page 452

Effort Allocation

0

10

20

30

40

50

60

70

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97

S
ta

ff
M

on
th

s
Plan
Actual

SSR PDR CDR (1) CDR (2)

End of
OAT (1)

End of
OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 6b.2-4. The effort allocation indicator showed that additional

funding must be allocated to meet the 1996 staffing requirements.

Lt. Col. Thompson used the measurement results to brief senior management about some
of the issues impacting the development of the MAPS software. They agreed with his
overall assessment and agreed to add four months to the current development schedule.
They also agreed to allocate additional funding to support the 1996 staffing requirements.
The plan was to use qualified Air Force personnel from other projects, and to hire outside
contractors to help with detailed design, coding, and software integration and test for the
MAPS Increment 2 development.

2.3 Tracking Performance Against the Revised Plan

Once the new schedule and staffing plans were in place, Lt. Col. Thompson’s concerns
shifted from evaluating the feasibility of the plans to assessing performance against the
plans. Although the milestone data continued to be useful in addressing the schedule and
progress issues, more detailed information was required to track the degree of completion
of the key development activities and products. The need for this information was clear as
Lt. Col. Thompson reviewed the information in the Gantt chart that represented the revised
project schedule (Figure 6b.2-2). The milestone schedule indicated that detailed design for
Increment 1 had been completed and software implementation was well underway. Based
on the schedule, about two-thirds of the time allocated for coding had already elapsed.
This didn’t mean however, that two-thirds of the Increment 1 software had been coded. To
get the information about the degree of activity and product completion that they needed,
Lt. Col. Thompson and Jennifer Cooper decided to implement several work unit progress
measures.

Part 6 - Software Measurement Case Studies

Page 453

Work unit progress measures compare the actual completion of associated work units for
software products and activities against a pre-established plan. If objective completion
criteria for each type of work unit are defined and adhered to, work unit progress measures
provide for a clear determination of software development progress. For each of the
MAPS CI's, Ms. Cooper recommended that the project use counts of the number of design
units implemented as the work unit progress measure. The design units represented the
lowest practical level of measurement, and the data could easily be collected from the
configuration management system. In this case, an implemented design unit was defined
as passing unit test and being entered into the project library.

To generate the CI work unit progress indicators, Ms. Cooper first defined the planned rate
of unit completion. Without detailed planning data available, Ms. Cooper generated a
straight-line completion plan beginning with CDR and ending with the scheduled
completion of the Increment 1 coding activity. In Ms. Cooper's previous experience with
work unit progress measures, she had found that the more accurate plans for the
cumulative number of work units completed over time often looked more like an S-shaped
curve than a straight line. This was due to the fact that the first few units tended to be
completed slowly, followed by a faster rate of completion rate as the activity progressed.
Nearing the end of the software activity, the completion rates tended to slow again as the
more difficult units tended to be completed last. For the MAPS work unit progress
measures, the straight-line plan was not perfect, but was seen as a useful approximation.
Everyone understood that they would not be too alarmed if progress lagged behind the
straight-line plan at the beginning of the development activity.

Once Ms. Cooper had established the plan, she accessed the configuration management
library to obtain a count of units completed to date. Specifically, she counted the number
of units that had been entered into the library each week over the course of Increment 1
implementation. The resulting graph is shown in Figure 6b.2-5. The graph indicated that
the CI implementation was progressing in accordance with the revised development plan.

Part 6 - Software Measurement Case Studies

Page 454

Implementation Progress
Increment 1

0

50

100

150

200

250

300

350

400

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

N
um

be
r

of
 U

ni
ts

 Im
pl

em
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 6b.2-5. The CI implementation progress indicator showed that

current progress was in accordance with the revised development plan.

Ms. Cooper knew that Lt. Col. Thompson wanted to emphasize software measures related
to the schedule and progress issue. As such, she decided to track progress for the two
items on the critical path very closely. These were the development of the Personnel
Information CI and the development of the data conversion software. The Personnel
Information CI was scheduled to be completed by March 1996. Ms. Cooper constructed a
plan to track work unit progress for the single CI the same way she did it for the aggregate
of the CIs in Increment 1. Again, the plan was derived by drawing a straight line between
CDR and the scheduled end of the coding activity. The resulting indicator was graphed
and is depicted in Figure 6b.2-6. When the actual number of design units were compared
to the plan, it became immediately clear that progress on this critical CI was lagging
significantly.

Ms. Cooper then decided to try and identify the source of the progress problem in the
Personnel Information CI. She defined two new work unit progress indicators using a
somewhat different perspective. She graphed the development progress data for the
screens and reports separately from the units that performed internal processing. The
screens and reports were being implemented using a 4GL while the internal processing
code was being written in Ada.

Part 6 - Software Measurement Case Studies

Page 455

Implementation Progress
Increment 1

CI - Personnel Information (BPI)

0

20

40

60

80

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

N
um

be
r

of
 U

ni
ts

 Im
pl

em
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 6b.2-6. An indicator that compared the actual number of design units

to the plan showed the Personnel Information CI to be lagging significantly.

The results are shown respectively in Figures 6b.2-7 and 6b.2-8. The measurement data
showed that the screen and report development was on track and indicated that the problem
was confined to the Ada code. When Lt. Col. Thompson investigated, he found out that
the Ada developers were having difficulty with interfacing their respective CIs to the
COTS relational database. The problem was not critical from a technical perspective, but
the workarounds were taking quite a bit of time to implement using SQL. Lt. Col.
Thompson did several things to correct the interface problems. The first thing that he did
was to bring in representatives from the COTS vendors to work on-site with the Ada
developers to provide real-time support in resolving interface problems. Secondly, he had
the development team conduct a one-time in-depth inspection of the CI’s design and
completed code. This inspection identified some design structures that were inefficient, but
could be corrected. Col. Thompson also assigned several of his most experienced Ada
programmers to work on the Personnel Information CI in an attempt to correct the
problem.

The other portion of the Increment 1 work that was on the critical path was the data
conversion software for the base-level databases. In tracking work unit progress for this
software, Ms. Cooper decided to count the lines of code that had been entered into the
configuration management library rather than counting the number of completed units.

Part 6 - Software Measurement Case Studies

Page 456

Implementation Progress
Increment 1

Screens and Reports

0

5

10

15

20

25

30

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

N
um

be
r

of
 S

cr
ee

ns
 a

nd
 R

ep
or

ts
 Im

pl
em

en
te

d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 6b.2-7. The development progress indicator for screens and

reports showed no problem.

Implementation Progress
Increment 1
Ada Code

0

5

10

15

20

25

30

35

40

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

N
um

be
r

of
 U

ni
ts

 Im
pl

em
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 6b.2-8. The development progress indicator showed a

significant problem in production of Ada code.

She decided that completed lines of code was a better measure of progress than a count of
units because the data conversion software was divided up into relatively few units and
they varied drastically in size. The units were not equivalent and using them to track
progress would have been misleading. Ms. Cooper generated the plan and actuals for the
data conversion software and graphed the indicator as shown in Figure 6b.2-9.

Part 6 - Software Measurement Case Studies

Page 457

The results showed that the data-conversion software development progress was
reasonably on track.

Implementation Progress
Increment 1

Data Conversion Programs

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

S
ou

rc
e

Li
ne

s
of

 C
od

e

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 6b.2-9 The implementation progress indicator for data

conversion showed no problem.

Part 6 - Software Measurement Case Studies

Page 458

Part 6 - Software Measurement Case Studies

Page 459

CHAPTER 3 - EVALUATING READINESS FOR TEST

During 1996, the MAPS measurement process was effective in helping to manage software
development effort. Progress against the revised plan was sufficient enough to allow for
the resolution of the problem reports that were previously backlogged. Additional
personnel that were earlier added to the development team allowed for the concurrent
development of both the Base and Headquarters level MAPS increments. The progress
measures showed that Increment 1 was nearing the completion of integration and test, and
some system level testing had already been conducted. The primary issue had shifted from
schedule and progress to the quality of the software. The key question was the readiness
of the software for Operational Test and Evaluation.

3.1 Increment 1

As the initial 1997 delivery dates grew closer, Lt. Col. Thompson wanted to know if
Increment 1 was ready to begin Operational Test. To help answer this question Ms.
Cooper defined a set of related indicators and graphed them as shown in Figure 6b.3-1.

When Ms. Cooper first joined the MAPS project, the project had not been collecting effort
data at the level of detail required to show how much effort was being applied to software
rework. As an organic development activity it was difficult to get the staff to record on
their timecards how they actually applied their effort during the week. Since the emphasis
had been on generating new code to meet the existing schedule, the development team
didn’t see a need for the information anyway. As such, only development effort was
collected as part of the time-reporting system. To get the data that she needed, Ms.
Cooper asked one of the programmers to modify the problem reporting system to collect
the “re-development” and “retesting” effort data related to software rework on a problem
by problem basis.

The change in the process was briefed to the developers, and Ms. Cooper began to collect
the data she needed to compare the amount of effort spent in rework vs. new development.
The data was graphed and is presented in the lower-right hand chart in Figure 6b.3-1.

P
ag

e
46

0

R
ea

di
ne

ss
 fo

r T
es

t
In

cr
em

en
t 1

P
ro

bl
em

 R
ep

or
t S

ta
tu

s

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0 29
 J

an
25

 M
ar

20
 M

ay
15

 J
ul

9
S

ep
4

N
ov

30
 D

ec

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

F
ig

ur
e

6b
.3

-1
a

P
ro

bl
em

 R
ep

or
ts

 D
is

co
ve

re
d

050

10
0

15
0

20
0

25
0

30
0

35
0

40
0 29

 J
an

25
 M

ar
20

 M
ay

15
 J

ul
9

S
ep

4
N

ov
30

 D
ec

Number of Problem Reports

D
is

co
ve

re
d

pe
r

P
er

io
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

F
ig

ur
e

6b
.3

-1
b

Te
st

 P
ro

gr
es

s

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0 29
 J

an
25

 M
ar

20
 M

ay
15

 J
ul

9
S

ep
4

N
ov

30
 D

ec

Number of Test Cases

P
la

n
A

tte
m

pt
ed

P
as

se
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

F
ig

ur
e

6b
.3

-1
c

E
ffo

rt
A

llo
ca

tio
n

0102030405060708090

10
0

29
 J

an
25

 M
ar

20
 M

ay
15

 J
ul

9
S

ep
4

N
ov

Staff Months

R
ew

or
k

D
ev

el
op

m
en

t

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

2
A

ug
 9

6

F
ig

ur
e

6b
.3

-1
d

Part 6 - Software Measurement Case Studies

Page 461

Ms. Cooper combined the rework effort data (Figure 6b.3-1d) with a work unit progress
graph for cumulative problem reports (Figure 6b.3-1a), and a graph of the number of
problem reports being opened on a weekly basis (Figure 6b.3-1b). She also included a
graph of test case progress (Figure 6b.3-1c). This combination of measurement indicators
suggested that Increment 1 was not yet ready to begin Operational Test. Lt. Col.
Thompson wanted to see the open and closed problem report trends converging, the
number of new problems being discovered declining, the number of test cases passed equal
to the number planned, and the amount effort being applied for rework decreasing. The
results indicated that the development staff was increasingly spending time correcting new
Increment 1 problems. This was of concern because they should have been transitioning to
the development of the code for Increment 2. He met with Ms. Cooper and asked her for
more information in order to identify what needed to be done to improve the situation.
Specifically, he wanted information about the types of problems that were being reported.
He was hoping that there was a common type of problem that could be effectively
managed.

Ms. Cooper spent the better part of a week with several of the testing personnel reviewing
the problem reports and classifying them as being related to performance, logic, interfaces,
or other. She decided to implement this classification scheme as a permanent part of the
problem reporting system so that the information would be readily available to support
future analysis. The results of the classification effort were graphed and are depicted in
Figure 6b.3-2. By far, the greatest number of the Increment 1 problems were related to
performance deficiencies.

Ms. Cooper further classified the performance problems according to their sources. The
results are shown in Figure 6b.3-3. The most common type of performance problem was
due to the incorrect use of SQL by the developers.

Part 6 - Software Measurement Case Studies

Page 462

Problem Report Classification
Increment 1 By Category

70%

13%

7%
10%

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

Performance Logic Interfaces Other

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Ridgway AFB: MAPS Data as of 19 Aug 96

Figure 6b.3-2. The problem report classification indicator showed that

the Increment 1 problems were related to performance deficiencies.

Problem Report Classification
Increment 1 By Performance Category

51%

29%

20%

0

200

400

600

800

1000

1200

SQL Usage DB Design LAN Tuning

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Ridgway AFB: MAPS Data as of 19 Aug 96

Figure 6b.3-3. The problem report classification indicator showed the cause

of performance problems was the incorrect use of SQL by the developers.

Ms. Cooper discussed the results of her analysis with Lt. Col. Thompson and pointed out
that the MAPS development represented the first time that many of the people on the
development team had used a relational database and SQL. The staff’s previous
experience had been with hierarchical databases and COBOL. This probably should not
have been a surprise since the SQL issue was part of the reason for the previous Personnel

Part 6 - Software Measurement Case Studies

Page 463

Information CI development problems. Lt. Col. Thompson again decided to bring in some
additional expertise to address the SQL issue. Although it wasn’t the best approach this
late in the project, the problems needed to be fixed quickly.

3.2 Increment 2

Increment 2 was scheduled for delivery early in 1997. According to the development
schedule, Increment 2 should have been nearing the completion of system test by the end of
February 1997. To assess the Increment 2 readiness for test status, Ms. Cooper generated
the same combination of graphs using the same indicators as she had done for Increment 1.
The results are shown in Figure 6b.3-4.

This time the situation was much more encouraging. The trends for open and closed
problem reports were converging, the discovery rate for new problems was declining
rapidly, and the amount of rework was relatively low and stable. In addition, a
comparison between the number of test cases planned, executed, and passed provided
further evidence that testing was being completed in accordance with the schedule. Ms.
Cooper wondered why the number of newly discovered problems was declining so rapidly.
Was the software that much better? Were discovered problems not being reported? Had
the testing stopped? The test progress results helped Ms. Cooper answer part of her
question. Since testing was proceeding as scheduled, the lower number of new problem
reports were not a result of reduced testing efforts. Ms. Cooper looked into the reporting
process and found that the identified problems were still being consistently documented.

Ms. Cooper continued to track the classes of reported problems, as shown in Figure 6b.3-
5. In contrast to the results for Increment 1, which had a high proportion of problems
related to performance, the problems for Increment 2 were much more evenly distributed.
The measurement data for Increment 2 indicated that the issues and problems that were
experienced in Increment 1 had been successfully addressed. Lt. Col. Thompson’s
decisions had helped to focus the right resources where they were needed.

P
ag

e
46

4

R
ea

di
ne

ss
 fo

r T
es

t
In

cr
em

en
t 2

P
ro

bl
em

 R
ep

or
t S

ta
tu

s

0

25
0

50
0

75
0

1,
00

0

1,
25

0

1,
50

0

19
 A

ug
 9

6
14

 O
ct

 9
6

9
D

ec
 9

6
3

F
eb

 9
7

31
 M

ar
 9

7
26

 M
ay

 9
7

21
 J

ul
 9

7

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

R
id

gw
ay

 A
FB

: M
A

P
S

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

D
at

a
as

 o
f 1

7
Fe

b
97

F
ig

ur
e

6b
.3

-4
a

P
ro

bl
em

 R
ep

or
ts

 D
is

co
ve

re
d

05010
0

15
0

20
0

25
0

19
 A

ug
 9

6
14

 O
ct

 9
6

9
D

ec
 9

6
3

F
eb

 9
7

31
 M

ar
 9

7
26

 M
ay

 9
7

21
 J

ul
 9

7

Number of Problem Reports

D
is

co
ve

re
d

pe
r

P
er

io
d

R
id

gw
ay

 A
FB

: M
A

P
S

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

D
at

a
as

 o
f 1

7
Fe

b
97

F
ig

ur
e

6b
.3

-4
b

Te
st

 P
ro

gr
es

s

0

20
0

40
0

60
0

80
0

1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

19
 A

ug
 9

6
14

 O
ct

 9
6

9
D

ec
 9

6
3

F
eb

 9
7

31
 M

ar
 9

7
26

 M
ay

 9
7

21
 J

ul
 9

7

number of Test Cases

P
la

n

A
tt

e
m

p
te

d

P
a

ss
e

d

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

7
Fe

b
97

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

F
ig

ur
e

6b
.3

-4
c

E
ffo

rt
A

llo
ca

tio
n

01020304050607080 19
 A

ug
 9

6
14

 O
ct

 9
6

9
D

ec
 9

6
3

F
eb

 9
7

31
 M

ar
 9

7
26

 M
ay

 9
7

21
 J

ul
 9

7

Staff Months

R
ew

or
k

D
ev

el
op

m
en

t

R
id

gw
ay

 A
FB

: M
A

P
S

D
at

a
as

 o
f 1

7
Fe

b
97

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

F
ig

ur
e

6b
.3

-4
d

Part 6 - Software Measurement Case Studies

Page 465

Problem Report Classification
Increment 2 By Category

29%

34%

23%

14%

0

50

100

150

200

250

300

350

400

450

500

Performance Logic Interfaces Other

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Ridgway AFB: MAPS Data as of 17 Feb 97

Figure 6b.3-5. The problem report classification indicator verified that the issues

and problems experienced in Increment 1 had been successfully addressed.

Part 6 - Software Measurement Case Studies

Page 466

Part 6 - Software Measurement Case Studies

Page 467

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT

With the development of the MAPS software proceeding according to plan, Lt. Col.
Thompson asked Ms. Cooper to extend the measurement process to track the progress
of the fielding of the Increment 1 Base-level systems at the various bases. This was
scheduled to occur throughout 1997, from January through October, with delivery of
the systems occurring at a relatively constant rate.

To support the installation process, a total of ten people were assigned and divided into
five teams. Each team was scheduled to spend two weeks installing MAPS at each of
the 100 base-level sites. The work during the two-week installation period included
data conversion, software installation, user training, and user support. After
installation the MAPS development team would provide support via a 24-hour help
line. The plan called for each site to run the existing military personnel system
concurrently with the newly installed MAPS for one week before shutting down the old
system completely. The 100 base-level sites included all Air Force bases in the United
States and overseas, Air Force Reserve commands, and selected Air National Guard
units.

4.1 Increment 1 Installation

To address the installation progress question, Ms. Cooper defined and graphed a
simple work unit progress indicator as depicted in Figure 6b.4-1. Since data
conversion was one of the major risks identified by the IPT, she wanted to have the
earliest possible warning of any problems.

It is clear from the graph that the installations were behind schedule almost from the
start. Ms. Cooper investigated and contacted each of the installation teams to try and
identify the causes for the delays. She heard a consistent story. The old base-level
system that MAPS was replacing had very loose edit requirements. It would accept
almost any personnel data that was entered. The result was that the data conversion
software that was written to the MAPS data specifications kept rejecting data that was
in a different format from what was expected. This was not an easy problem to fix
because each of the existing base-level databases was different from the others.

Ms. Cooper showed Lt. Col. Thompson a linear extrapolation of the actual installation
data points. This is shown in Figure 6b.4-2. Based on the actual rate of progress, a
total of fifteen months would be required to complete the installations, not ten months
as originally planned. The rate of base installation was limited by the availability of
teams. Based on the projection, Lt. Col. Thompson decided to extend the installation

Part 6 - Software Measurement Case Studies

Page 468

schedule. He also asked Ms. Cooper to provide an update to the projection as more
data became available.

Installation Progress
Increment 1

0

20

40

60

80

100

120

Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98

Nu
m
be
r
of
Ba
se
In
st
all
ati
on
s

Plan
Actual

Ridgway AFB: MAPS Data as of 26 Feb 97

Figure 6b.4-1. A work unit progress indicator was used to monitor the

major risk in data conversion.

Installation Progress
Increment 1

0

20

40

60

80

100

120

Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98

N
um

be
r

of
 B

as
e

In
st

al
la

tio
ns

Plan
Actual
Linear (Actual)

Ridgway AFB: MAPS Data as of 26 Feb 97

Figure 6b.4-2. . An installation progress indicator provided early

warning of an inadequate schedule.

Part 6 - Software Measurement Case Studies

Page 469

4.2 Software Support

By November of 1997, sixty-eight of the 100 base-level sites had been installed. As
part of the measurement process, Ms. Cooper had been tracking and categorizing
problem reports from the field. Given the previous problems on the project, it was
important to Lt. Col. Thompson to address the user’s concerns.

At the highest level, Ms. Cooper classified the problem reports as being related to
hardware, software, or user error. She analyzed the software-related problem reports
in more detail by focusing on those that were the result of defects in the design or the
code. She classified the problems as related to performance, logic, interfaces with
other systems, and other. The data coming in from the field showed that the most
frequent type of problem was related to logic defects. This is shown in Figure 6b.4-3.

Problem Report Classification
User Reported Problems By Category

0

20

40

60

80

100

120

Performance Logic Interfaces Other

N
um

be
r

of
 P

ro
bl

em
 R

ep
or

ts

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 6b.4-3. Measurement data from the field showed that the most

frequent problems were related to logic defects.

Ms. Cooper also decided to classify the problems according to their source by
identifying the CI that had to be changed in order to correct the problem. She graphed
the ratio of problem reports to function points for each CI. The results were graphed
as shown in Figure 6b.4-4. Ms. Cooper found that the Unit Mobilization (BUM) CI
accounted for a disproportionate number of the logic defects. Clearly there was a
problem with this particular CI.

Part 6 - Software Measurement Case Studies

Page 470

Problem Report Density
Increment 1 By CI

0.0

0.1

0.2

0.3

0.4

0.5

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD

P
ro

bl
em

 R
ep

or
ts

 p
er

 F
un

ct
io

n
P

oi
nt

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 6b.4-4. A comparison of problem reports to function points showed

that the Unit Mobilization (BUM) CI accounted for most of the logic defects.

Lt. Col. Thompson asked Ms. Cooper to compare how much effort was being applied
to correcting the problems, with what it would cost to redesign and redevelop the Unit
Mobilization CI. Ms. Cooper generated the graph shown in Figure 6b.4-5 to reflect
the effort that was applied over a two-month period.

Ms. Cooper noted that the Unit Mobilization CI required the equivalent of three full-
time staff members to support problem resolution. She was surprised that there
continued to be such a high rate of newly discovered problems, particularly
considering that the Unit Mobilization CI had been in operational use for almost a
year. In talking with the lead programmer responsible for maintaining the CI, she
found that as existing problems were corrected, new ones were being introduced. She
decided to compare the cost of continuing to maintain the CI as currently implemented
over a projected ten-year period with the cost of reengineering and maintaining a more
reliable version of the CI. The screen and report generation functions did not need to
be changed.

Part 6 - Software Measurement Case Studies

Page 471

Rework Effort
Increment 1 By CI

0

1

2

3

4

5

6

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD

S
ta

ff
M

on
th

s

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 6b.4-5. The rework effort indicator also identified the Unit

Mobilization (BUM) CI as the major cause of problems.

Ms. Cooper estimated that the cost of reengineering would be $1.2 million over a 10-
month period, with estimated software support costs of $800K over the remaining
nine-year period. This $2.0 million was compared to an estimated $3.0 million cost to
maintain the existing CI over the same ten year time frame. This comparison was
based on an average $100K cost per person year.

Lt. Col. Thompson decided to redesign the Unit Mobilization CI and planned to release
it in the next MAPS update scheduled for late 1998.

Of course, budget factors needed to be considered in the redesign decision. Given the
development funding constraints, it would have been easy to defer the changes. By
including the maintenance organization in the decision, funds were made available
from several sources to support redesign of the CI during the development phase.

4.3 Epilogue

The MAPS development turned out to be a good example of implementing a
measurement process on an existing project. As the project progressed, the data
required to manage the key issues was identified, collected, and analyzed. The
measurement activity was focused on the primary software issues of schedule and
progress, and product quality.

Part 6 - Software Measurement Case Studies

Page 472

The measurement process was adapted to the specific characteristics of the MAPS
project. Measures better suited to information system software, such as Function
Points, were implemented. New measures were also defined to support the installation
process. By the end of the MAPS development, the entire project team realized how
measurement was useful in identifying and resolving both management and technical
problems.

Part 6 - Software Measurement Case Studies

Page 473

SENSOR SUSTAINING
ENGINEERING CASE STUDY

PART 6C

Part 6 - Software Measurement Case Studies

Page 474

Part 6 - Software Measurement Case Studies

Page 475

SENSOR SUSTAINING ENGINEERING CASE STUDY

The sensor sustaining engineering case study describes a software support project
for a loosely coupled set of radars used by the U.S. Army. This study addresses the
use of measurement on a project in which the system has been operational for thirty
years. Management of this project recently transferred from the operating command
to the logistics command. The logistics organization is now responsible for
management of all hardware and software configuration changes. The critical issues
are largely driven by the age and capacity of the hardware, the current staff’s
expertise with the technologies, and the harsh environments at the sensor locations.
The users require regular software releases to upgrade functionality and to correct
problems. Priorities frequently change during the release process. This case study
focuses on the use of measurement to improve sustaining engineering cost estimates
and to assess and manage the impact of requirements volatility.

The Sensor Sustaining Engineering case study is organized into three chapters:

• Chapter 1, Project Overview - provides an overview of the technical and
management aspects of the project.

• Chapter 2, Tailoring Measures to the Project - describes the measurement
process, data collection problems, and tools used to implement the measurement
approach.

• Chapter 3, Applying Software Measures - illustrates how measurement helps to
objectively estimate the effort associated with each software change request, and
the cost of a post-deployment software release. Finally, management of
requirement changes is discussed.

Part 6 - Software Measurement Case Studies

Page 476

Part 6 - Software Measurement Case Studies

Page 477

CHAPTER 1 - PROJECT OVERVIEW

This chapter introduces the sensor sustaining engineering project scenario and
describes the technical and management aspects of the project. The project scenario
illustrates the implementation of an issue-driven measurement process on an existing
maintenance project. As such, special consideration is given to using software
measurement data that is readily available within the established software and project
management processes. The example project is representative of a typical system in
operation.

1.1 Introduction

The Space Object Tracking System (SPOTS) is a loosely coupled confederation of
ground-based sensors. These sensors provide near-earth orbit space object
identification data to command centers throughout the world. Some individual sensors
became operational in the 1960’s and 1970’s. Major computer upgrades occurred as
resources were provided, therefore, each site has fourteen sensors with a combination
of optical, mechanical, or phased-array technology to provide information to command
center operators.

From the time the sensors became operational until 1995, the software was maintained
by the command that operated the sensors. The hardware was maintained by a
separate logistics organization. According to Ms. Morris, the head of logistics, “This
separation between hardware and software caused configuration management
problems and made some modifications difficult. For example, in the course of a
communications upgrade, both hardware and software needed to be changed.
Coordinating between the two organizations and developing an accurate cost and
schedule estimate was difficult.”

Furthermore, because software maintenance was not the highest priority of the
operations command, software releases were not actively planned or managed. Each
software change request was developed individually through unit test by a contract
engineer and integrated into the operational system without coordination or formal
management. This ad-hoc management style led to a number of issues, including:

• loss of configuration control

• introduction of a large number of defects into the software

• the same code was changed multiple times during an update

Part 6 - Software Measurement Case Studies

Page 478

• no clear schedule for software updates was defined

• the cost of each release was not known

 Upper-level Army management recognized these problems. To address these issues, in
1994 General Knopf and General Texter signed a management directive that called for
a reorganization and a new management strategy. The reorganization transferred
software management responsibility from the operations command to the logistics
organization. The directive also clearly defined the roles and responsibilities for
software maintenance between the two groups. Figure 6c.1-1 shows the roles and
responsibilities defined in the directive. Furthermore, to foster a culture of more
objective management, the directive stated that measurement would be used to ensure
that the goals of the reorganization were met.

 Responsibilities for Sustaining Engineering

 User/Operations Tasks Logistics Software Team Tasks

 Identify, prioritize, and approve new

requirements

 Fix emergency problems

 Validate operational capability Identify problem causes, and determine

proposed solutions

 Determine if a software release is

suitable for use

 Provide user with solution options, cost

estimates, recommendations, impacts to other

systems, and perceived risks

 Prioritize and approve installation

schedule

 Design, develop, and modify software

 Identify problems (e.g., error codes,

messages, and incorrect outputs)

 Provide certified release package (e.g., version

description, installation procedure, operator

checklists, training, etc.)

 Restore system to operations Provide necessary test software or data

 Perform configuration management

 Figure 6c.1-1. Measurement would ensure that the goals of a reorganization
and new management strategy would be achieved.

 With the retirement of Ms. Morris, Mr. Mike Smith was promoted to lead the Project
Management Office (PMO) for SPOTS. He was chartered to implement the new
management directive. Mr. Smith earned a Bachelor’s degree in engineering from the

Part 6 - Software Measurement Case Studies

Page 479

University of Washington and spent several years working on the structural
engineering of antennas and radomes, where measurement is common practice. He
spent the last eight years working on hardware modifications to the SPOTS sensors.
He recently completed the Defense Systems Management College (DSMC) program
manager’s course.

 Mr. Smith organized the SPOTS Project Management Office into ten Integrated
Product Teams (IPTs), one for each of the eight sensor types, one for software
development processes, and one for configuration management (CM). Each sensor
IPT had at least one engineer, one equipment specialist, and one sensor manager. The
sensor IPTs managed the software releases and work with the software IPT and the
CM IPT on the development of procedures and policies for the SPOTS project office.

 1.2 System Architecture and Functionality

 The primary objective of the SPOTS maintenance organization is to incorporate user
requested changes to improve the performance, functionality, and/or usability of the
system based on mission requirements. Figure 6c.1-2 shows the hardware connectivity
for SPOTS. The current system consists of eight separate radar types residing at
fourteen locations. The radars use large mainframe computers with applications
written primarily in Ada, FORTRAN, and various assembly languages to process the
target data. Few of the sensors have graphical user interfaces; most rely on text-based
messaging and command line systems.

 The operating concept of the current system is to receive tasking from the command
center, to plan the search for a requested object, and to provide the object’s range and
location data to the command center. As with many legacy systems, the current
implementation has a significant number of problems with computer resources and
usability. These problems result in downtime and user errors that delay processing of
tasks from the command center. The outdated communication system uses antiquated
data rates, algorithms, and media to transfer data from the radar site to headquarters.
This further impacts the reliability of SPOTS. Consequently, there is a large backlog
of change requests for improved functionality, more reliability, and timely processing
of tasks.

Part 6 - Software Measurement Case Studies

Page 480

Command
Center

 Figure 6c.1-2. The current system architecture uses antiquated data
transfer from the radar site to headquarters.

Part 6 - Software Measurement Case Studies

Page 481

CHAPTER 2 – TAILORING MEASURES TO THE PROJECT

 At the time of the reorganization, software for each of the eight sensors was
maintained under a separate contract. Thus, Mr. Smith had to manage eight different
contracts for the software. His first action was to consolidate the eight level-of-effort
contracts into a single task-order contract to simplify contract management. This
approach facilitated negotiation of individual release cost, schedule, and content in
accordance with the management directive.

 With this action, Mr. Smith immediately faced questions from the user/operations
organization, oversight organizations, and headquarters regarding post-deployment
software releases:

• How much will a release cost?

• How long will a release take?

• What changes will be in the release?

• How much rework is occurring?

• How long does it take for a priority change request to become operational?

Additionally, Mr. Smith had a set of questions about the software responsibility he had
inherited:

• How much software currently exists?

• How many approved change requests of each priority are awaiting
implementation?

• How many new change requests arrive for analysis each quarter? How much
analysis effort is required for each one?

• How many emergency, urgent, and routine changes occur?

• How much sensor downtime is caused by software?

• How often does the existing system fail? How many of these failures can be
attributed to software?

Part 6 - Software Measurement Case Studies

Page 482

In response to these questions, Mr. Smith placed Major Alan Richardson in charge of
the software Integrated Product Team (IPT) and hired Ms. Gail Jackson as a
measurement analyst. These two individuals were assigned to develop a repeatable
software maintenance release process with a measurement strategy that addressed
these basic issues.

2.1 Development of SPOTS Measurement Strategy

As the first step in defining the SPOTS measurement strategy, Major Richardson and
Ms. Jackson reviewed the management directive and held a series of meetings with the
sensor commanders, headquarters personnel, and SPOTS management to discuss their
concerns and questions. After the meetings, Major Richardson and Ms. Jackson
organized and prioritized the information according to the corresponding management
issues. The prioritization was based on their judgement and the number of groups that
raised the issue during their meetings. Next, they defined measures to address the
identified issues. The results are shown in Figure 6c.2-1.

Using Figure 6c.2-1, Major Richardson and Ms. Jackson identified the data necessary
to calculate the identified measures and noted whether the data was currently
available. By reading contractor and site produced documents and interviewing
operations and headquarters personnel, Ms. Jackson identified some historical data on
previous software releases. While there was little cost data, there was ample reliability
information; some schedule and requirements volatility data; and change request
initiation, approval, and installation data. Figure 6c.2-2 clarifies the data that was
available and the process or task order modifications that were necessary to collect the
remaining information.

Part 6 - Software Measurement Case Studies

Page 483

Project-
Specific Issue

Question Measure

Lack of
configuration
control

� How much software is there?

� How many approved change
requests of each priority are
awaiting implementation?

� What kind of changes is
made?

� What changes will be in the
release?

� What is the performance
impact of the changes?

� Software size

� Change requests by
backlog, priority, kind, CI,
and performance impact

� Computer resource
utilization

A large number of
defects exist in the
software

� How often does the existing
software fail?

� How many defects are
identified by the operators
during system testing?

� How much sensor downtime is
due to software?

� How many of the objects
requested are reported?

� Software reliability

� Downtime due to software

� Defects found during
operational test and
evaluation

� Objects tasked and
reported

Multiple changes
to code in
consecutive
updates

� How often is a particular CI
changed?

� How many change requests
are rejected by the operations
approval board?

� Changes per CI

� Change requests rejected

No clearly defined
schedule for
software updates

� How long does a release take?

� How long does a priority
change request take to
become operational?

� How much do the
requirements change during a
release?

� What percent of schedules are
met?

� Schedule including:

- release plan approval
to release acceptance

- change request
written to approval to
delivery

� Requirements added,
deleted, and changed
after release approval

No understanding
of the release cost

� How much does a release
cost?

� How much effort does it take
to analyze a change request?

� What change requests require
the most effort to implement?

� How many change requests
are evaluated each month?

� Cost per release

� Effort to:

- Analyze the impact of
a change request

- Implement per
change request type

� Change requests
evaluated

Figure 6c.2-1. A listing of SPOTS Issues/Questions/Measures was
used to define useful measures.

Part 6 - Software Measurement Case Studies

Page 484

Measure Data Needed Data Available
Software size Source lines of code by sensor,

platform, and language
No. A special task order will
be issued to develop
software inventory.

Change request by
backlog, priority,
kind, type,
performance
impact, and effort

Change requests approved by:
• Priority - emergency, urgent,

or routine
• Kind - modification or fix
• Type - define “type” including

rules
• Performance Impact

Some. All change requests
are available, including the
priority and kind. Meeting
minutes from the operations
approval board contain the
date and disposition of
requests. The types need to
be defined. Individual task
orders need to be modified
to get the remaining data.

Computer
Resource
Utilization

CPU busy, memory, disk space,
and I/O throughput pre- and post-
release

No. Individual task orders
will be modified to collect
data important to each
sensor.

Software reliability
and downtime due
to software

Failures caused by software, and
system operating hours

Yes. Downtime incidents are
logged, and all problem
reports are classified as a
failure or enhancement.
Operating hours are logged
in a system scheduling
document.

Defects found
during operational
test and
evaluation

Problem reports written during
user scenario testing

Yes. Operators complete
problem reports during
testing and produce a letter
after the test.

Objects tasked
and objects
reported

Objects requested by Control
Center, and objects reported by
sensor

Yes. The user organization
reports this data on a daily
basis.

Changes per CI Name of each affected
configuration item, and number of
changes made to that CI

No. A software configuration
management system will be
implemented by the CM IPT
to automatically gather this
information by release.

Change requests
rejected

Number of change requests
reviewed and withdrawn by the
board

Yes. Meeting minutes from
the board are published after
each meeting with the
disposition of each change
request reviewed.

Figure 6c.2-2. The selected SPOTS measures were reviewed to
determine if the data was currently available.

Part 6 - Software Measurement Case Studies

Page 485

Measure Data Needed Data Available
Schedule including:

- Release plan
approval to
release
acceptance

- Change
request written
to approval to
delivery

• Date the release is approved,
delivered, and approved

• Date the change request is
written, approved, and
delivered

Some. Some sensors
provided planned release
delivery dates. Historical
release start dates may be
derived from reading
documents. Individual task
orders will be modified to
collect this data. Change
request date is available.

Requirements
added, deleted,
and changed after
release approval

Planned number of change
requests, and updates to plan
when a change occurred

Some. Some sensors
provided planned and actual
delivery content. Some
changes could be derived
from reading documents.
Individual task orders will be
modified to collect data.

Cost per release Dollars spent (by activity) for all
personnel involved on each
release

No. Individual task orders
will be modified to collect
data from the implementing
contractors, and the
government team will be
asked to complete data
collection forms.

Effort to:

- Analyze the
impact of a
change request

- Implement the
change request
by type

Engineering hours spent per
change request by type of change

Some. The government
engineer responsible for
performing the impact
analysis will be required to
record the effort spent on
each impact report. The
categorization by type will be
developed, and individual
task orders will be modified
to collect the effort data from
the implementing
contractors.

Change requests
evaluated

Number of change requests
reviewed by the board

Yes. Meeting minutes from
the board are published after
each meeting, with the
disposition of each change
request reviewed.

Figure 6c.2-2. The selected SPOTS measures were reviewed to
determine if the data was currently available.

Part 6 - Software Measurement Case Studies

Page 486

Mr. Smith and the sensor IPTs were briefed on the analyses results summarized in
Figures 6c.2-1 and 6c.2-2. Ms. Jackson was able to answer many of the questions
raised during the meetings by compiling the available data into a set of spreadsheets.
This quick demonstration of measurement value led to the formalization of the
measurement effort. Ms. Jackson was asked to develop requirements for data
collection on all software releases. Ms. Jackson’s response was a memo calling for the
following data to be included in all software release task orders:

• Cost Data:

- Effort expended per change request and per month

- Categorization of change request according to the types that were defined

- Dollars expended per month

• Schedule Data:

- Milestone dates for each change request and for the release as a whole

- Milestone dates for each change request included requirement analyzed, design
complete, code and unit test complete, and integration complete

- Milestone dates for the release include release start date and release
installation date

- Plan and actual dates for each milestone

• Growth and Stability Data:

- Planned number of change requests for the release, and all changes made to
the release content (change requests added, deleted, or modified) during the
release

- Actual logical source lines of code added, changed, or deleted per change
request and per release

• Computer Resource Utilization:

- Pre- and post-release data relative to a specific sensor (some sensors are
limited by memory, while others may exceed the required response time)

The government personnel were also required to collect data on their workload,
including effort spent analyzing software changes and time spent on a particular
release.

2.2 Implementation of SPOTS Measurement Strategy

Major Richardson and Ms. Jackson published a measurement guidebook for use as a
reference by the SPOTS team. The guidebook explained how the data was collected
based on the software maintenance release process, as well as which measures would
be used together for integrated analysis. Major Richardson and Ms. Jackson also
developed a one-hour briefing to communicate the goals, use, and expectations of the

Part 6 - Software Measurement Case Studies

Page 487

measurement project to the sensor IPTs and the implementing contractors. They
began to integrate a set of tools to support measurement collection and analysis
including tools for data storage, change request tracking, configuration management,
cost estimation, and software reliability modeling.

To fully implement the strategy, the missing data needed to be collected. Some of the
unavailable data was relatively easy to generate. For example, a contract was
awarded to baseline the software inventory. The contractor reported that the system
contained a total of eight million source lines of application code written in more than
20 different languages to execute its mission. Figure 6c.2-3 summarizes the SPOTS
software inventory.

SPOTS Software Inventory

Sensor Primary
Computing

Environment

Size
(KSLOC)

Primary
Language

Sites

A DEC VAX 11/785 500 FORTRAN 1

B IBM 4381 600 FORTRAN 1

C Cyber, MODCOMP 891 Ada 4

D Western Electric 4500 SNX 1

E Cyber, MODCOMP 1262 Ada 2

F Cyber 800 Ada 1

G PDP-11 256 FORTRAN 3

H DEC VAX 9000 750 Ada 1
Project: SPOTS Data as of 31 Jul 97

Figure 6c.2-3. SPOTS contained eight million source lines of

application code in more than 20 different languages.

In some cases, the necessary data was available. For example, the sensor 1PT was
interested in tracking the software failure rate in the field to understand how many
problems were affecting the sensor operators, and how well the delivered releases were
performing. Failures were counted whenever the system performance did not meet
user requirements, such as missing a large number of tasked observations or when the
system crashed. A sensor operator inspected each problem to determine if a software
failure had occurred. All downtime incidents caused by a software failure were
counted. These data items and explanations were reported in monthly maintenance
logs provided by the site operators. Major Richardson needed to identify which
software version was operating at the time of the incident. Figure 6c.2-4 shows the
failure rate for two releases prior to the reorganization and seven releases after the
directive was implemented. Over the nine releases the number of operational failures
was reduced from 6.8 per 1,000 operational hours to fewer than 2.4 per 1,000 hours.
This improvement in product quality is also visible in the work backlog chart of Figure

Part 6 - Software Measurement Case Studies

Page 488

6c.2-5. Users generated fewer change requests when the system operated without
failure for long periods.

Software Operational Failures
By Release

0

1

2

3

4

5

6

7

94-4 95-1 95-2 95-3 95-4 96-1 96-2 96-3 97-1 97-2 97-3

Release

F
ai

lu
re

s
pe

r
1,

00
0

H
ou

rs

Threshold

Project: SPOTS Data as of 31 Jul 97

Figure 6c.2-4. . In the last nine SPOTS software releases, the number

of operational failures was decreased by more than half.

The sensor IPT used the failure rate information in several ways. One was to set a
threshold at four failures per 1,000 hours of operation based on the historical data
prior to the reorganization. If the system was operating below this threshold, the
sensor IPT manager could decide to incorporate more difficult changes into the next
release. If the system was operating above the threshold, the decision could be to
switch to a previous version of the software or to only allow fault corrections until the
failure rate was again below the threshold.

Second, the graph was used to estimate the expected number of failure events during a
mission and the probability of completing a mission of a certain duration without a
failure. For example, assume that the control center was planning a one-week
observation period and needs to know the probability of the software delivery
supporting operations for the entire period. In this case, the probability of a failure-
free mission is given by the standard formula:

The reliability (R), or probability of no failure, in time period t:

R = exponential (-λλt) = e(-λλ t)

Where λ is the failure rate from Figure 2-1 (2 failures/1000 hours) and t is the 168
hours in a week. Therefore, the probability of no failure in one week is:

Part 6 - Software Measurement Case Studies

Page 489

R = e(-0.002*168) = 0.71

The reliability value of 0.71 means that there is a 71 percent chance that the system
will not fail in one week of operation because of a software problem.

In some cases, the available data required much time and effort to validate,
understand, and use. For example, to find out how many change requests were
currently open, Major Richardson read the minutes of the operations approval board,
reviewed historical release documentation, and contacted each sensor site. Several
discrepancies between the sets of records were uncovered, such as change requests that
the board showed as not evaluated, the site showed as approved and not complete, and
the records showed as delivered. After spending several weeks cleaning up the
multiple databases and coordinating with the operations personnel, the corrected data
was entered into a series of spreadsheets.

Figure 6c.2-5 was developed to show the total inventory of change requests by priority
that existed on SPOTS. Each decrease in the work backlog (Feb 97, Sep 97)
corresponded to an accepted delivery. None of the sensors had outstanding emergency
change requests. This change request indicator was also decomposed by sensor for
more detailed analysis. Mr. Smith requested that this indicator be updated monthly to
keep him apprised of the change request workload and status. Detailed analysis and
external reporting were done quarterly. This allowed enough time to show trends in
the data over the typical six-month maintenance cycle. Detailed analysis on a monthly
basis would not allow the smoothing to occur naturally and might cause unnecessary
alarm within the operations community. To support this regular reporting, a central
measurement database was developed to maintain the status of all approved change
requests.

Part 6 - Software Measurement Case Studies

Page 490

Change Request Backlog

75

100

125

150

Jan 96 Mar 96 May 96 Jul 96 Sep 96 Nov 96 Jan 97 Mar 97 May 97 Jul 97 Sep 97 Nov 97

O
pe

n
C

ha
ng

e
R

eq
ue

st
s

Emergency
Urgent
Routine

Project: SPOTS Data as of 31 Jul 97

Figure 6c.2-5. The change request backlog indicator reported the additional

workload on the engineering staff that was caused by the reorganization.

At other times, the analysis requirements dictated using both existing data sources and
creating new collection forms. For example, Mr. Smith needed to understand the
additional workload on his engineering staff because of the reorganization. Ms.
Jackson was asked to address this issue. She decided to examine the amount of yearly
effort required to evaluate and estimate costs for incoming change requests. She
needed to know three things: 1) the rate at which change requests arrived, 2) the time
spent evaluating the change, and 3) the number of changes that were rejected by the
user organization after evaluation. At any time during the software change process,
the user board can withdraw an approved change request. Another change may have
corrected the problem or an external event, such as a site closing or an external
interface change, may have invalidated the problem. The number of change requests
that were withdrawn out of the total evaluated was a measure of rework in the process.
Using the minutes of the users’ requirements control board, Ms. Jackson collected data
on incoming change requests and rejections for several quarters. The results are
shown in Figure 6c.2-6.

Part 6 - Software Measurement Case Studies

Page 491

Change Requests
Evaluated and Rejected

0

20

40

60

80

100

120

QI FY96 Q2 FY96 Q3 FY96 Q4 FY96 Q1 FY97 Q2 FY97

Quarter

N
um

be
r

E
va

lu
at

ed

0

10

20

30

40

50

60

N
um

be
r

R
ej

ec
te

d

Rejected

Total
Evaluated

Project: SPOTS Data as of 31 Jul 97

Figure 6c.2-6. The incoming change request indicator helped

to plan for future rework.

Ms. Jackson also asked the engineers to record the number of hours they spent on each
evaluation. The average, based on one year’s worth of evaluations, was 5.5 hours per
change request. From Figure 6c.2-6, 72 change requests were evaluated each quarter,
an average (288 per year). Thus, the engineering staff expended an additional 1,584
hours of work (about 0.75 staff) per year on evaluations. Of these, an average of 8%
(23 evaluations) were withdrawn each year. These withdrawn changes translated to a
loss of only $7,590 per year (5.5 hours per evaluation at $60 per hour for 23
withdrawn rework evaluations per year). Rework is not a priority issue for the
SPOTS change analysis process.

2.3 SPOTS Measurement Tools

To ensure that the measurement data was collected consistently across all releases, and
to ensure that it could easily support management decisions, Major Richardson and
Ms. Jackson identified a standard suite of tools for use by analysts and project
personnel. These tools support the analysis of the measurement data to answer the
questions and address the issues. Although the tools are neither completely automated
nor integrated, Ms. Jackson, Major Richardson, and the sensor IPTs have found them
useful for SPOTS.

Recognizing that integration of several measures was required, the tools needed to
collect, store, and manage data from multiple sources. In the SPOTS environment, the

Part 6 - Software Measurement Case Studies

Page 492

tools required a data repository element, a cost/resource estimation tool, a
configuration management tool, a software change request tracking tool, and a
reliability estimation tool.

The data repository is a commercially available spreadsheet running on a desktop
computer. The spreadsheet allows the IPTs to view historical data from the software
maintenance releases as well as track planned and actual measures for ongoing
releases. It provides graphical displays of the measurement data, as well as linear
regression or tabular analysis of the data.

Cost and schedule estimates are assisted by an implementation of Boehm’s
Constructive Cost Model (COCOMO) specifically tailored for software maintenance.
This tool helps a release manager estimate the effort, cost, and schedule required to
produce a software maintenance release. Major Richardson and Ms. Jackson used
historical data to calibrate the model to their environment.

Another tool used is the configuration management system. This tool allows the
analyst to identify the configuration item changed, as well as the date and the size of
an individual change.

The Change Request tracking system is a PC-based database tool that allows each IPT
to track the status of all change requests.

Finally, the Computer Aided Software Reliability Estimation (CASRE) tool is
available for software reliability assessments. (This tool is a public-domain project
available in the McGraw-Hill Handbook of Software Reliability, Michael Lyu, editor.)
This tool allows IPT engineers to forecast field failure rates from test data and track
operational failure rates.

Part 6 - Software Measurement Case Studies

Page 493

CHAPTER 3 – APPLYING SOFTWARE MEASURES

With the reorganization, the SPOTS sensor IPTs now had the responsibility to
estimate the impact and cost of individual change requests. They were also
responsible for estimating and tracking the cost of individual software releases.
Because these were high priority issues and little historical data was available, Ms.
Jackson and Major Richardson decided additional measures were required.

3.1 Estimating Effort on an Individual Change Request

Originally, the effort for an individual change request was estimated by the analyst or
engineer assigned to the evaluation. The analyst or engineer performed a design
analysis and estimated how long it would take to code and integrate the design. This
produced inconsistent and variable estimates for each change, estimates that were
usually ignored in the release planning process.

To improve this procedure, Ms. Jackson and Major Richardson categorized 178
completed software changes into ten types:

• Computational

• Data Handling

• Improvement

• Input

• Interface

• Logic

• Operations

• Output

• Performance

• Specification

Their plan was to find the effort associated with each class of change and base future
estimates on the historical data. The sample consisted of 67 enhancement-related
changes (38%) and 110 defect corrections (62%). Using the categories, Major
Richardson prepared a bar graph of this change data, as shown in Figure 6c.3-1.

Part 6 - Software Measurement Case Studies

Page 494

Based on the data, the majority (65%) of the implemented changes were found to be
logic, data handling, system improvement, and system mission enhancement. No
changes out of the 178 impacted the SPOTS input type. This data led to changes in the
inspection process to concentrate on logic and data handling problems. The next
questions concerned where the engineering effort was being expended, and if it
correlated to the types of problems found.

Software Maintenance Changes
By Type

0

5

10

15

20

25

30

35

40

45

50

Logic Data Imprvmt Spec Output Comp Iface Ops Perf Input

N
um

be
r

of
 C

ha
ng

es

Project: SPOTS Data as of 31 Mar 98

Figure 6c.3-1. Plotting maintenance changes versus functions caused the

inspection process to concentrate on logic and data handling problems.

Because the release for each change request was managed as a separate project, Major
Richardson was able to collect data from the contractor on the engineering effort
associated with each change. Using the change types and aggregating the effort related
to each change, he created Figure 6c.3-2. This figure shows that, although changes
based on requirements or interface specification changes ranked fourth in number of
changes with 22, they accounted for 42% of the total effort at 582 staff-days. Logic
changes required the third largest amount of effort. This historical data is integral to
the cost estimating procedure developed by Ms. Jackson to support release planning
and change request impact analysis.

Part 6 - Software Measurement Case Studies

Page 495

Software Change Effort
By Type

0

100

200

300

400

500

600

700

Spec Imprvmt Logic Data Comp Ops Iface Perf Output Input

S
ta

ff
D

ay
s

Project: SPOTS Data as of 31 Mar 98

Figure 6c.3-2. An indicator that aggregates staff effort to the types of

change caused a change in cost estimating for future releases.

The data from Figures 6c.3-1 and 6c.3-2 can also be combined to calculate the
average staff-days of effort required to implement each type of change request. By
reviewing the change requests and accurately assigning them to the change types
established by Ms. Jackson and Major Richardson, sensor managers were able to
estimate the engineering staff-days required to design, code, and test individual
changes. For example, interface specification changes required an average of 36
staff-days of effort, with a range between 20 and 100 staff-days. The average staff-
days of effort needed for requirement specification changes was 22, with a range
between 3 and 75 staff-days.

As each release was completed, each change was categorized and the actual effort for
each was added to the database to refine the estimates for the next set of changes.

3.2 Estimating Cost on a Software Maintenance Release

The sensor IPTs work with the sensor operators and Control Center users to define
those changes that will be included in each release. As a part of this analysis, an
expected cost and schedule for the release is estimated. If the expected cost, schedule,
reliability, and functionality are acceptable to all parties, a task order is sent to the
implementing contractor for a bid proposal.

Part 6 - Software Measurement Case Studies

Page 496

The contractor usually provides a proposal to implement each release, including an
organization chart and functional work allocation (e.g., For change request Y, a senior
engineer will work 50 hours and Quality Assurance will spend 100 hours ensuring
completeness of deliverables). The team is generally small, comprised of no more than
seven or eight people. The contractor’s proposal is a bottom-line effort, and cost is
usually all that is reviewed.

Toward the end of the first year after implementing the measurement process, a release
was defined and sent out for a bid from the contractor. The bid was received at
16,000 staff-hours for the release. This seemed high to the sensor teams, but they did
not have a good technique for evaluating the bid. Because of the measurement
strategy, Ms. Jackson had data on four previous software releases for this sensor.
Using this data, she developed the cost estimation procedure shown in Figure 6c.3-3
for comparison with the bid. Using this procedure, three cost estimates were derived:
7,500 hours, 8,000 hours, and 6,250 hours. After discussing and clarifying the
original 16,000-hour estimate, the cost of the release was negotiated to be 8,500 staff-
hours, a $500,000 savings over the original bid. The actual release cost included
8,625 staff-hours.

Part 6 - Software Measurement Case Studies

Page 497

Cost Estimation Procedure

Introduction
The Software Maintenance Release Cost Estimation Procedure involves making three
estimates and using engineering judgment to arrive at a final forecast. Two of the three
estimates are based on empirical data collected from several software releases. The
third estimate is based on a parametric cost estimation model called Constructive Cost
Model (COCOMO). The COCOMO model has been calibrated based on previous
maintenance releases of this project.

For the purposes of this procedure a software maintenance release contains more than
one change. The following paragraphs describe each step in the procedure.

Estimate #1: Estimate engineering effort for individual changes

1) Classify the proposed Change Request according to type.

2) Record the average and maximum effort required for each change request based
on historical data.

3) Sum the average and maximum effort estimates for the entire release and multiply
by 2 to account for the non-engineering overhead effort.

4) Multiply the staff-effort by $110/hour to estimate the cost of the release.

Estimate #2: Estimate release cost based on previous releases

1) Examine the historical release database and compare the site, size (number of
changes), planned schedule, and complexity estimate of this release with those in
the database.

2) Record the average and maximum cost for the “best match” releases.

Estimate #3: Run the COCOMO Model to estimate release costs

1) Create a new sustaining engineering project in COCOMO.

2) Enter the required common parameters such as size of each configuration item
being modified in this release, development mode, and labor costs.

3) Enter the required Cost Driver Data such as complexity and staff experience.

4) Enter a best guess at the schedule data.

5) Run the COCOMO reports and use the resulting cost estimates.

6) The COCOMO based tool has a “what-if” function to examine constraints on staff-
size and schedule to recalculate costs under special circumstances. Use this
feature to analyze the release assumptions.

After all three cost estimates are calculated, examine the range of costs. Think about
the contents of the configuration control briefing such as reliability, maintainability,
backlog, and complexity, and make judgments about how these factors will influence
the cost of the release. Estimate the release based on the available information. This
approach helps to justify the estimates and helps save money in negotiations with the
contractors.

Figure 6c.3-3. Software measurement data on previous software releases
allowed the acquirer to develop an accurate cost estimation procedure.

Part 6 - Software Measurement Case Studies

Page 498

3.3 Measuring Requirements Volatility

Another key issue that drove the reorganization was the lack of clearly defined
schedules for software releases. Because each SPOTS release is managed as a
separate task order, the estimated schedule was provided with each proposal. The
early schedules were not met. To investigate this issue, Ms. Jackson reviewed data
from several releases and interviewed IPT managers, operators, and contractors. She
determined that after the sensor IPT managers, operations team, and Control Center
team agreed on a delivery plan, changes to the requirements became a major issue.
Mr. Smith asked Ms. Jackson to look into requirements volatility and to devise a way
to estimate the impact of requirements changes on release schedules.

Ms. Jackson defined requirements volatility as change request additions to the delivery
content, change request deletions from the delivery content, or changes in the scope of
an existing change request. A change in scope meant the estimated effort increased by
more than 25% from the agreed-upon plan. The requirements volatility for 21
deliveries is shown in Figure 3-4. Only five of the ten most recent deliveries
experienced unstable requirements, while ten of the first eleven releases experienced a
problem. This reduction is partially due to management’s focus on this issue. Release
17 experienced a large requirements change because of a change in the mission for the
sensor. The original plan contained five change requests. During design, those five
change requests were deleted from the release, and twenty high-priority changes were
added. This was a joint decision between the operations team and the development
team. Measurement supported this decision by predicting the cost and schedule
impact, and showing that there would be no performance impact. The following
paragraphs describe how the schedule impact was forecast.

Figure 6c.3-5 is a scatter plot of schedule performance vs. the percentage of
requirements volatility for these deliveries. A 100% value means the schedule was
met, less than 100% indicates early delivery, and greater than 100% indicates late
delivery. By drawing a trend line, Ms. Jackson was able to predict the size of the
schedule slip using the measured volatility of the requirements. The schedule
increased regardless of whether the requirement's change is an addition or deletion,
because the x-axis is a percentage of all changed requirements.

Part 6 - Software Measurement Case Studies

Page 499

Requirements Volatility
By Release

0%

100%

200%

300%

400%

500%

600%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Release

P
er

ce
nt

 C
ha

ng
e

fr
om

 P
la

n
Additions
Changes
Deletions

Project: SPOTS Data as of 31 Mar 98

Figure 6c.3-4. The requirements volatility indicator shows a steady decrease
in unstable requirements, due to management’s focus on this issue.

Schedule vs. Requirements Volatility

0%

50%

100%

150%

200%

250%

0% 50% 100% 150% 200% 250%

Requirements Change

P
la

nn
ed

 S
ch

ed
ul

e
C

ha
ng

e

Project: SPOTS Data as of 31 Mar 98

Version under
consideration

Figure 6c.3-5. An indicator for schedule performance versus requirements

volatility was able to predict the size of an expected schedule slip.

The graph in Figure 6c.3-5 helped Ms. Jackson explain the expected impact of
changes to the delivery plan as they arose. For example, one version release that was
scheduled for delivery in 91 calendar days contained 15 planned change requests. The
operations group wanted to add five changes requests, drop two of the existing ones,

Part 6 - Software Measurement Case Studies

Page 500

and change the scope of four at preliminary design. Using the graph, Ms. Jackson
forecasted the impact to be a 30% schedule slip, or approximately 27 days added to
the original 91-day schedule.

Upon seeing the graph and prediction, the operations group decided that this slip was
not acceptable and that only the scope changes would be incorporated. The graph and
its interpretation facilitated objective communication about version release plans and
benefited customer relations.

3.4 Epilogue

The software measurement process has provided substantial benefit in addressing the
original issues identified by the Army management. The selected software measures
have clearly addressed the majority of the project issues, and have provided
information to support project management decisions.

The sensor software configurations are under control. The IPT managers and Mr.
Smith are able to report the current operating versions, the size of the inventory, the
Configuration Items (CIs) that are changed, and the frequency of changes. The
measurement activity played a large part in this.

The failure rate of the software in the field has diminished since the reorganization,
and the change request backlog has also been reduced. Furthermore, the teams are
capable of forecasting the failure rate prior to a release, allowing better planning.

All releases now have clearly defined schedules that can be monitored and assessed for
feasibility. Also, the impact of changes to the release content can be evaluated and
discussed objectively with all parties involved on SPOTS.

Most importantly, the sensor managers, Mr. Smith, and Army managers have a better
understanding of the release costs. The cost of individual change requests can be
estimated. The number of change requests submitted and the effort required to analyze
a change request is known, allowing better management of the SPOTS workload.
Finally, the amount of rework can be measured on both the change request approval
activity and the release implementation process.

PSMPSMPSMPSM

SUPPLEMENTAL
INFORMATION

PART 7

Part 7 - Supplemental Information

Page 502

Part 7 - Supplemental Information

Page 503

SUPPLEMENTAL INFORMATION

This part of Practical Software Measurement: A Foundation for Objective
Project Management provides supplemental information to promote a better

understanding of the concepts and terms used within the Guide. It also provides
additional background information about Practical Software Measurement.

The information in this part of the Guide includes:

• Glossary - This section provides definitions of terms used throughout the Guide.

• List of Acronyms - Acronyms used throughout the Guide are defined in this
section.

• Bibliography - References related to PSM and software measurement are
provided in this section.

• PSM Project Information - The project attribution policy and contact
information are included in this section.

• Index - This section provides a comprehensive index for the Guide.

• Comment Form - Comments and suggestions concerning the PSM Guide may be
submitted using this form.

Part 7 - Supplemental Information

Page 504

Part 7 - Supplemental Information

Page 505

TABLE OF CONTENTS

GLOSSARY ...507

LIST OF ACRONYMS ..515

BIBLIOGRAPHY ..517

Software Measurement References... 517

PSM PROJECT INFORMATION..523

Practical Software Measurement Attribution.. 523

Project Contact Information ... 523

INDEX...525

Part 7 - Supplemental Information

Page 506

Part 7 - Supplemental Information

Page 507

GLOSSARY

actual data - See measured value.

acquirer – The agent or organization responsible at the system level for development
or sustaining engineering of a software product. The acquirer can be defined as the
customer for the software development or sustaining engineering effort. See
customer.

aggregation level - Effective measurement analysis and reporting requires that the
data be aggregated to higher levels of the software components and project
organizational structure. The aggregation levels define the different ways the
measurement data can be grouped and organized for reporting on the project. The
aggregation levels describe how the measurement data relates to existing product and
process structures. This organization allowing the measurement results to be
combined, and later decomposed, into meaningful pieces of information.

aggregation structure – These structures are used to define the data according to the
defined aggregation levels. These levels may describe the personnel and management
structure of the project, or the configuration of physical components in the program.
For example, one structure in a program is the personnel organization chart. Another
structure is the Work Breakdown Structure that represents the hierarchical tree of
work elements that must be completed in the program. All entities in a structure
should be of the same type, such as software modules. However, these entities may
reside at various levels of the structure, such as software modules at the component,
routine, or unit level of the software architecture.

application - In the PSM process, this term refers to one of the two basic
measurement activities which comprise the software measurement process. The
application activity involves collecting, analyzing, and acting upon the measurement
data. See tailoring.

application software - Software specifically produced for the functional use of a
computer system, as opposed to system software. Examples include software for
navigation, fire control, payroll, or general ledger.

attribute - Attributes are characteristics or properties assigned to each software
measurement data item. Attributes are used to categorize the ways that an analyst
may retrieve and view the software measurement data. The attributes of the
measurement data must be known and assigned before the measurement data is
collected. An example of an attribute is problem reports priority levels, or
development organization.

Part 7 - Supplemental Information

Page 508

Commercial Off The Shelf (COTS) - Commercial items that require little or no
unique government modifications or maintenance over the life cycle of the product to
meet the needs of the procuring agency.

common issue - An issue that is basic or common to almost all programs. PSM
defines six common software issues. See issue.

component - A software component may be any separately-identifiable software
design element in a software product structure. A software component may be defined
at any size or functional level within a software product. A component may be defined
as any of the structural elements that are commonly defined for software products;
including units, design modules, or configuration items. A software component
represents any entity in the structure of software products. Since there is little
agreement within the software community on structural terminology, "software
component" may take on many different meanings. The developer’s software
development plan(s) should clearly articulate the approach to creating the software
structure, and the definitions that will be used for the components. Components can be
units, configuration items (CIs), objects, interfaces, screens, reports, packages, icons,
primitives, or other measurable product structures. Problem reports and change
requests are sometimes considered to be components, especially with respect to
software maintenance activities during the sustaining engineering phase.
COTS/GOTS and other non-developed or reusable software products can also be
counted as components. Some components can be aggregated to form higher level
components (for example, units to CIs to versions). These can be referred to as sub-
components.

Configuration Item (CI) - An aggregation of products (including software products)
that satisfy an end-use function and is designated for separate configuration
management by the acquirer. Software CIs are selected based on tradeoffs of various
factors; including software function, size, host or target computers, support concept,
plans for reuse, criticality, interface considerations, the need to be separately
documented and controlled, and other factors.

Cost/Schedule Control System Criteria (C/SCSC) - DoD requirements that define
what a contractor’s management control system must have to qualify for bidding on
selected military program acquisitions. The criteria include requirements for
integrating cost, schedule, and technical performance measurements using the Work
Breakdown Structure (WBS) and earned-value accounting methods. C/SCSC
facilitates the analysis of variances from planned activities, and provides a means to
estimate the cost of the contract at completion. This requirement is no longer required
on new contracts as long as the contractor has an approved Earned Value
Measurement System in place.

Part 7 - Supplemental Information

Page 509

customer - The organization that procures software products for itself or another
organization.

cyclomatic complexity - A measure of the logical complexity of a unit, based on the
number of unique paths through the unit. This measure is used to evaluate code
quality and to predict testing effort.

data item - the quantitative attributes that are collected and aggregated to determine a
measure. For example, for the Effort measure, the Number of Labor Hours is one
data item.

defect - A product’s nonconformance to its specification; or any error in
documentation, requirements, design, code, test plans, or any other work product.
Defects are discovered during reviews, tests, and operations.

developer - An organization that develops software products. The term “develop”
may include development, modification, reuse, reengineering, sustaining engineering,
maintenance, or any other activity that results in software products. The developer
may be a contractor or a government agency.

development - The activities that result in software products, including requirements
analysis, design, implementation, and integration and test. This term is used
throughout PSM to describe the second of three phases in the software life cycle. See
program planning, sustaining engineering.

earned value - The value of completed work, expressed in terms of the budget
assigned to that work. An Earned Value Measurement System (EVMS) is a cost
management technique that relates resource planning to technical, cost, and schedule
requirements. The earned value process budgets and schedules all work activities into
time-phased increments that establish a cost and schedule measurement baseline.

estimation - The type of analysis that is conducted to establish target values for
software size, effort, and schedule to support project planning. Estimation usually
starts with historical data and a set of assumptions about the project’s process and
products. Estimation not only produces estimates, but also identifies uncertainties that
feed back into the issue identification process. Estimation should be conducted during
the initial planning activity and during all subsequent plans.

expected (or planned) value - Planned or historical measurement data, such as
milestone dates, target level of reliability, or required productivity. See measured
value.

Part 7 - Supplemental Information

Page 510

failure - 1) Termination of the ability of a functional unit to perform its required
function; 2) an event in which the system or system component does not perform a
required function within specified limits.

feasibility analysis - The type of analysis that is conducted to determine whether
project plans and targets are technically realistic and achievable. Feasibility analysis
uses historical data, experience, and consistency checks to evaluate the project plans.
Any risk identified during this analysis should be entered into the project’s risk
management process. Feasibility analysis should be conducted during the initial
planning activity and during all subsequent plans.

function point - A software size measure of the level of information-processing
functionality contained within a software product. Function points are derived early in
the software life cycle from requirements or design specifications, and are applied
across diverse application domains and technology platforms.

implementation - In the PSM process, this term refers to the activities required to
establish a measurement process within an organization.

indicator - A measure or combination of measures that provides insight into a
software issue or concept. PSM frequently uses indicators that are comparisons, such
as planned versus actual measures. Indicators are generally presented as graphs or
tables.

information system - A combination of computer hardware and software, data, and
telecommunications that performs functions such as collecting, processing,
transmitting, and displaying information. Excluded are hardware and software
computer resources that are physically part of, dedicated to, or essential to real-time
mission performance of weapon systems.

issue - An area of concern where obstacles to achieving program objectives might
arise. Issues include risks, problems, and lack of information. These three types of
issues are defined as:

• problem - An area of concern that a project is currently experiencing or is
relatively certain to experience. For example, a shortage of staff with the right
skills may be an actual problem that is delaying the project.

• risk - An area of concern that could occur, but is not certain. A risk is a potential
problem. Risks represent the potential for the realization of unwanted, negative
consequences form a project event. For example, a project plan may be based on
the assumption that a COTS component will be available on a given date. There
is a possibility (probability) that the COTS may be delayed and have some amount
of negative impact on the project.

Part 7 - Supplemental Information

Page 511

• lack of information - An area where the available information is inadequate to
reliably predict project impact. Thus, satisfaction of project objectives is
questionable even if no problems or risks are present. For example, lack of
information about the size of the software to be developed could result in the
project “discovering” that it has more work to do than originally planned.

life-cycle phase - PSM defines three major life-cycle phases: project planning,
development, and sustaining engineering. Four principal software activities occur
within the development and sustaining engineering phases: requirements analysis,
design, implementation, and integration and test.

low-level data - Software measurement data that is aggregated, collected, and reported
at a level of detail that allows for the isolation of problems and for overall analysis
flexibility. Aggregation of data is commonly at the software activity level
(requirements analysis, design, implementation, and integration and test), the software
component level, and the software function level.

maintenance - See sustaining engineering.

measure - The result of counting or otherwise quantifying characteristics of a process
or product. Measures are numerical values assigned to software attributes according
to defined criteria.

measured (or actual) value - Actual, current measurement data, such as hours of
effort expended or lines of code produced. See expected value.

measurement - The process of assigning quantitative values to software properties,
according to some defined criteria. This process can be based on estimation or direct
measurement. Estimation defines planned or expected measures. Direct measurement
results in actual measures.

measurement analysis - The use of measurement data to identify problems, assess
problem impact, project an outcome, or evaluate alternatives related to software
issues. See estimation, feasibility analysis, and performance analysis.

measurement analyst - The person(s) or team responsible for tailoring and applying
software measures for a given program or organization.

measurement category - A set of related measures. Each common issue defined in
PSM has one or more corresponding measurement categories. Software measures that
provide the same type of information are grouped under a specific measurement
category. Each category answers different types of software-related questions.

Part 7 - Supplemental Information

Page 512

measurement information - Knowledge derived from analysis of measurement data
and measurement indicators.

metric - See indicator.

milestone - A scheduled event for which some project member or manager is held
accountable. A milestone is often used to measure progress.

normalization - Combining or comparing measures from different activities, different
programs, or with different units of production. For example, to compare the quality
of work produced in two programs, it would be necessary to look at defect counts in
relation to the amount or size of the work produced. This often requires defining and
validating conversion rules and/or models.

performance analysis - The type of analysis that is conducted to determine whether
software development efforts are meeting defined plans, assumptions, and targets.
Plan and actual performance data are the inputs to this process. The performance
analysis process is designed to identify risks, problems, and corrective actions that can
be taken. Performance analysis should be conducted periodically once a project has
committed to a plan.

planned data - See expected value.

problem report - A documented description of a defect, unusual occurrence,
observation, or failure that requires investigation, and may require software
modifications.

project manager - The official responsible for acquiring, developing, or supporting a
system to meet technical, cost, schedule, and quality requirements. Acquisition,
development, and support includes both internal tasks and work that is contracted to
another source.

project planning - The activities necessary to define product requirements, assess and
select software developers, and develop project plans. This term is used throughout
PSM to describe the first of three phases in the software life cycle. See development,
sustaining engineering.

repeatability - The ability of two analysts to perform the same measurement analysis
and to arrive at the same conclusions and recommendations.

rework - Any effort to perform work that has already been completed. Rework effort
begins once a defect is found and continues until all of the work required to obtain
acceptance of the rework is complete. Rework can also be measured in terms of size
changes.

Part 7 - Supplemental Information

Page 513

rippling - Rippling occurs when a problem that arises in one issue area has an effect
on another issue. For example, software size growth may cause effort overruns.
Rippling multiplies the effect of an issue.

risk - An area of concern that could occur, but is not certain. A risk is a potential
problem. Risks represent the potential for the realization of unwanted, negative
consequences from a project event. For example, a project plan may be based on the
assumption that a COTS component will be available on a given date. There is a
possibility (probability) that the COTS may be delayed and have some amount of
negative impact on the project.

software activity - In the PSM process, this term refers to the four key elements of the
overall software process; requirements analysis, design, implementation, and
integration and test. Individual software activities can take place at any time during
any phase of the software life cycle.

software component - A general term used to refer to a software system or an
element, such as unit, CI, object, or screen. See component.

Software Engineering Process Group (SEPG) - A group that facilitates the
definition, maintenance, and improvement of the software process used by an
organization.

software manager - The person responsible for making decisions relating to the
software issues. This could be the customer project manager or the developer’s
project or technical manager.

software project - The people, processes, and organizations responsible for
developing or supporting a software product, either as a stand-alone item or as part of
a larger system.

sustaining engineering - The activities necessary to ensure that installed, operational
software continues to perform as intended in system operation. This term is used
throughout PSM to describe the third of three phases in the software life cycle.
Software development can take place during the sustaining engineering phase. See
program planning, development.

structures – See aggregation structure.

tailoring - In the PSM process, this term refers to one of the two basic measurement
activities which comprise the software measurement process. The tailoring activity
includes identification and prioritization of program issues, selection and specification
of appropriate software measures, and integration of the measurement requirements
into the developer’s software process. See application.

Part 7 - Supplemental Information

Page 514

traceability - The ability to link conclusions and recommendations to the software
measures using a defined sequence of activities.

user - The agent or organization who will employ and operate a software product in
the intended target environment.

weapon system - Items that can be used directly or indirectly by the armed forces to
carry out combat missions.

Work Breakdown Structure (WBS) - A work breakdown structure for software
defines the software-related elements associated with program work activities and
products. Many measures are aggregated and analyzed at various WBS levels.

Part 7 - Supplemental Information

Page 515

LIST OF ACRONYMS

A&T Acquisition and Technology

ACWP Actual Cost of Work Performed

AIS Automated Information System

BCWP Budgeted Cost of Work Performed

BCWS Budgeted Cost of Work Scheduled

C/SCSC Cost/Schedule Control System Criteria

C/SSR Cost/Schedule Status Reports

C4I Command, Control, Communications, Computers, and Intelligence

CMM Capability Maturity Model

COCOMO Constructive Cost Model

COTS Commercial Off The Shelf

CPR Cost Performance Report

CI Configuration Item

DAB Defense Acquisition Board

DSMC Defense Systems Management College

DT&E Development, Test, and Evaluation

E&MD Engineering and Manufacturing Development

EVMS Earned Value Measurement System

GAO General Accounting Office

GOTS Government Off The Shelf

IFPUG International Function Point Users Group

IPPD Integrated Product and Process Development

IPT Integrated Product Team

ISSA Inter Service Support Agreement

JGSE Joint Group on Systems Engineering

Part 7 - Supplemental Information

Page 516

JLC Joint Logistics Commanders

LAN Local Area Network

MAISAP Major Automated Information System Acquisition Program

MAISRC Major Automated Information System Review Council

MDAP Major Defense Acquisition Program

MIS Management Information System

MOA Memorandum of Agreement

MOU Memorandum of Understanding

NDI Non-Developed Item

OSA Open Systems Architecture

OSD Office of the Secretary of Defense

OT&E Operational Test and Evaluation

OUSD Office of the Under Secretary of Defense

PSM Practical Software Measurement

RFP Request for Proposal

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SISMA Streamlined Integrated Software Metrics Approach

SPC Software Productivity Consortium

STEP Software Test and Evaluation Panel

WBS Work Breakdown Structure

Part 7 - Supplemental Information

Page 517

BIBLIOGRAPHY

This bibliography lists measurement references that augment or support the guidance
included in Practical Software Measurement. Readers may wish to consult these
resources for additional information. The first section includes published
measurement-related books and reference manuals. Brief annotations are provided to
describe each reference. The second section includes government agency-specific
directives, instructions, reports, and standards that address software measurement.
The books are generally available through most technical publishers and bookstores.
Government documents are available through the National Technical Information
Service, 5285 Port Royal Road, Springfield, VA 22161, 703-487-4650.

Software Measurement References

Baumert, John H., and Mark S. McWhinney, September 1992, Software Measures
and the Capability Maturity Model, CMU/SEI-92-TR-25, ESC-TR-92-025,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

A reference that identifies which software measures can reasonably be expected at
the various levels of SEI software process maturity. This book includes example
graphs and advice on how to report specific measures.

Boehm, Barry W., 1981, Software Engineering Economics, Englewood Cliffs, NJ:
Prentice-Hall.

A primary reference for software estimation and measurement. This book provides
detailed information on the COCOMO software estimation model.

Brooks, Frederick O., Jr., 1975, The Mythical Man Month: Essays on Software
Engineering, Reading, MA: Addison-Wesley Publishing Company.

A primary reference for software engineering. This book relates key lessons
learned in managing a large software program and provides an overall perspective
for the project manager.

Part 7 - Supplemental Information

Page 518

Carleton, Anita D., Robert E. Park, Wolfhart B. Goethert, William A. Florac,
Elizabeth K. Bailey, and Shari Lawrence Pfleeger, September 1992, Software
Measurement for DoD Systems: Recommendations for Initial Core Measures,
CMU/SEI-92-TR-19, ESC-TR-92-019, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

This reference provides recommendations and a rationale for the SEI-defined Core
Measures. The Core Measures include size, effort, schedule, and quality (measured
in terms of defects and problem reports) and address issues common to almost all
software programs.

DeMarco, Tom, 1982, Controlling Software Projects: Management, Measurement,
and Estimation, New York: Yourdon Press.

This book provides practical guidance for collecting and analyzing software
measures.

Deming, W. Edwards, 1986, Out of the Crisis, Cambridge, MA: Massachusetts
Institute of Technology, Center for Advanced Engineering Study.

This book describes the quality crisis across a number of industries and relates
effective strategies for dealing with them, focused on the use of Statistical Process
Control techniques.

Dumke, Reiner R., 1993, Software Metrics: A Subdivided Bibliography,
Magdeburg, Germany: Technical University “Otto von Guricke” of Magdeburg.

This bibliography provides a comprehensive guide to both research and practical
publications in software measurement, grouped by topic.

Fenton, Norman E., 1991, Software Metrics: A Rigorous Approach, London:
Chapman & Hall.

This book advocates a rigorous approach to software measurement that is based on
fundamental measurement theory. It argues that much of modern software
measurement is flawed because it ignores measurement fundamentals. This book
gives the reader specific tools to overcome these deficiencies and put a
measurement program on solid theoretical ground. This book is for the reader who
desires a more theoretical treatment of software measurement than is found in
PSM.

Florac, William A., Park, Robert E., and Carleton, Anita D, April 1997, Practical
Software Measurement: Measuring for Process Management and Improvement,

Part 7 - Supplemental Information

Page 519

CMU/SEI-97-HB-003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

This guide is based on the PSM process and principles of statistical process
control. It identifies an effective approach for using performance data to manage
and improve software processes.

Florac, William A., with the Quality Subgroup of the Software Metrics Definition
Working Group and the Software Process Measurement Project Team, September
1992, Software Quality Measurement: A Framework for Counting Problems and
Defects, CMU/SEI-92-TR-22, ESC-TR-92-022, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

This reference provides a framework for counting problems and defects in software
and using them to assess quality, which is one of the SEI Core Measures. It
includes checklists that allow the reader to define how defects are actually defined
and counted.

Goethert, Wolfhart B., Elizabeth K. Bailey, Mary B. Busby, with the Effort and
Schedule Subgroup of the Software Metrics Definition Working Group and the
Software Process Measurement Project Team, September 1992, Software Effort and
Schedule Measurement: A Framework for Counting Staff-Hours and Reporting
Schedule Information, CMU/SEI-92-TR-21, ESC-TR-92-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

This reference provides frameworks for counting software staff-hours and schedule,
both of which are SEI Core Measures. It includes checklists that allow the reader
to define how staff-hours and schedule data are actually defined and counted.

Grady, Robert B., and Deborah L. Caswell, 1987, Software Metrics: Establishing a
Company-Wide Program, Englewood Cliffs, NJ: Prentice-Hall.

This book describes how Hewlett-Packard’s corporate measurement program was
implemented. It includes information on topics that range from how to compute
specific measures to how to sell a measurement program to senior management.

Grady, Robert B., 1992, Practical Software Metrics for Project Management and
Process Improvement, Englewood Cliffs, NJ: Prentice-Hall, Inc.

This book examines more detailed issues with respect to software measurement, and
more specifically relates measurement to software process improvement. It builds
on information from the previous reference.

Part 7 - Supplemental Information

Page 520

Hetzel, Bill, 1993, Making Software Measurement Work: Building an Effective
Measurement Program, Boston, MA: QED Publishing Group.

This book addresses how to get measurement implemented in an organization. It
emphasizes fundamentals, explains how to begin, and includes a list of
measurement tools and services available at the time of publication.

Humphrey, Watts, 1989, Managing the Software Process, Addison Wesley, New
York.

This book describes the software process maturity levels developed by the Software
Engineering Institute at Carnegie Mellon University. It defines each of the five
Capability Maturity Model maturity levels, and outlines the criteria for determining
each one. This book contains the basis for SEI’s Capability Maturity Model.

The Institute of Electrical and Electronics Engineers, Inc., 1992, IEEE Standard for
Software Productivity Metrics, IEEE Std 1045-1992, New York, NY.

This IEEE standard describes a variety of software measures that can be used to
consistently define software productivity. Detailed information is provided for each
of the more than thirty measures it contains.

International Function Points Users Group, 1994, Function Points Counting
Practices Manual, Westerville, OH.

This industry-established standard defines the rules for counting function points.
The document is updated periodically to account for advances in function point
technology.

International Function Points Users Group, 1994, Guidelines to Software
Measurement, Westerville, OH.

This guidebook introduces the basic concepts of software measurement. It
describes how the measurement process fits into other software activities, and
provides guidance on implementing a measurement program. It reviews product
and process measures, discusses indicators, and examines ways to use measurement
results.

Jones, T. Capers, 1991, Applied Software Measurement, McGraw Hill, New York.

This book describes various methods for measuring the schedule, cost, and quality
of software programs. It discusses the major functional size metrics, including
DeMarco’s “Bang” metrics, function points, and feature points, but focuses
primarily on the use of function points. Productivity and quality averages from
Jones’ historical database are included.

Part 7 - Supplemental Information

Page 521

Musa, John D., Anthony Iannino, and Kazuhira Okumoto, 1987, Software
Reliability: Measurement, Prediction, Application, New York, NY: McGraw-Hill
Book Company.

This book discusses the theoretical and practical applications of software reliability
measurement. It defines software reliability, reviews and compares the various
reliability models, and describes how reliability measurement can be used in
systems engineering, program management, and in the management of the
operational phase of the software life cycle.

Park, Robert E., with the Size Subgroup of the Software Metrics Definition Working
Group and the Software Process Measurement Project Team, September 1992,
Software Size Measurement: A Framework for Counting Source Statements,
CMU/SEI-92-TR-20, ESC-TR-92-020, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

This reference provides a framework for counting source lines of code (SLOC) and
using them to assess software size, which is one of the SEI Core Measures. It
includes checklists that allow the reader to define how SLOC are actually defined
and counted.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, 1993,
Capability Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, ESC-
TR-93-177, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA.

This reference describes a software process maturity framework that forms the
basis for assessing the capability of a software organization. Five maturity levels
and the key practices within each level are described.

Putnam, Lawrence H., and Ware Myers, 1996, Controlling Software Development,
IEEE Computer Society Executive Briefing. IEEE Computer Society Press.

This short booklet is aimed at executives and managers. It describes important
concepts related to planning and tracking individual software projects, and also
addresses how this information is used for longer-term software process
improvement. Topics include estimating, defect management, measuring progress,
productivity, and more. The booklet includes various sample indicators and
explains how they should be used and interpreted.

Putnam, Lawrence H., and Ware Myers, 1992, Measures for Excellence: Reliable
Software on Time, within Budget, Englewood Cliffs, NJ: Prentice-Hall.

This book focuses primarily on using tools for automated size estimation and
project tracking, and also discusses life-cycle models, life-cycle management, and
productivity analysis. It includes observations about patterns of software behavior,
based on Putnam’s historical database of software projects.

Part 7 - Supplemental Information

Page 522

Schultz, Herman P., May 1988, Software Management Metrics, M88-1, ESD-TR-
88-001, The MITRE Corporation, Bedford, MA.

This reference is a relatively early work from a military software measurement
viewpoint. It provides an initial overview of selected software management
indicators.

Software Productivity Consortium, Software Measurement Guidebook, SPC-91060-
CMC, Version 02.01.00, August 1994, Software Productivity Consortium, Herndon,
VA, and International Thompson Computer Press, 1995.

This reference provides detailed information that helps to define and interpret a
software measurement process. It contains detailed guidance on a number of
software measures.

Part 7 - Supplemental Information

Page 523

PSM PROJECT INFORMATION

Practical Software Measurement Attribution

One of the primary purposes of Practical Software Measurement: A Foundation for
Objective Project Management is to encourage the widespread implementation of
software measurement throughout the DoD, government, and industry. The
information included in the Guide was developed by a group of measurement
professionals who gave much of their own time and effort to help meet this objective.

We encourage you to make direct use of the material contained in Practical Software
Measurement. We ask that you acknowledge the source of the information as:

Practical Software Measurement: A Foundation for Objective Project Management,
Version 3.1, 17 April 1998.

Additional copies of this Guide are available in hard cover and electronic formats.

Project Contact Information

Practical Software Measurement: A Foundation for Objective Project Management
is intended for those software acquisition and development organizations who need to
more objectively plan, implement, control, and evaluate their software programs.

If you would like more information on using Practical Software Measurement, or on
available PSM products and services please contact:

PSM Support Center
Cheryl Jones
Naval Undersea Warfare Center
Code 2232
1176 Howell Street
Newport, RI 02841-1708

(401) 832-4581 (Voice)
(401) 832-2130 (Fax)
DSN Prefix 920

psm@csd.npt.nuwc.navy.mil

http://www.psmsc.com

http://www.psmsc.com/
mailto:psm@csd.npt.nuwc.navy.mil

Part 7 - Supplemental Information

Page 524

Part 7 - Supplemental Information

Page 525

INDEX

— A —

Aggregation -- see Data normalization and aggregation

Aggregation Level 90

Analysis Process 13-18, 42, 215, 219, 221, 223, 225, 231, 237, 270, 277, 283

Attribute 30, 41, 89-90, 92, 104, 111, 124, 216, 257

— B —

Benefits of Measurement 11

— C —

Capability Maturity Model 32, 120, 182-183

Collection Level 14, 104, 111

Common Issue 28-29, 31, 42, 61, 75, 79-80, 84, 89, 109

Cost/Schedule Control System Criteria (C/SCSC) 152

— D —

Data see also Measures
Historical 40-41, 46, 50, 97-98, 159, 211, 217, 219, 225, 238, 243, 244, 247, 248, 250-252,
 254, 258, 260, 266, 268, 270-271
Sources of 40, 94, 98-99, 203, 212-214
Verification 40-41, 211, 215-216

Data Collection 14, 84, 92-93, 97-98, 105, 111, 164, 211-212, 214-215, 260, 281
Level 12, 14, 16, 33, 104, 111
Periodicity 101, 103-104, 111, 202

Data Normalization and Aggregation 36, 40-41, 217

Defect 32, 35, 86, 99, 109, 120, 126, 166-182, 196, 198, 216, 233, 238, 259, 269, 280-281,

 290, 404

— E —

Earned Value 9, 32, 37, 51, 58, 105, 120, 151-152, 225

Estimation 42, 44-46, 58, 60, 78, 99-100, 104, 148, 160, 162, 202, 219-220, 237, 243-261,

 293-300, 491, 496

Error -- see Defect

Expected Values 230, 237-238

— F —

Fault -- see Defect

Part 7 - Supplemental Information

Page 526

Feasibility Analysis 44-47, 219-220, 237, 259, 263-272, 303-322

— I —

Indicator 15, 33, 39, 41-44, 49, 52, 229, 234, 237-240, 266-277, 291-389, 406-428, 447-469,

 487-493, 497
Case Study Examples 406-498
Definition of 43, 229
Examples 230, 234, 235, 259, 265, 275-276, 279
Integrated Examples 303, 329
Single Examples 303, 327
Types of Indicators 43, 231, 275-278

Issue
Development Performance 14, 28, 80, 86, 88, 109, 120, 125, 148, 177-179, 182-186, 244,
 303, 318, 327, 358, 360, 362, 385, 404, 413
Growth and Stability 14, 20-21, 28, 32, 80, 86-87, 109, 120, 125, 157-166, 293, 298, 303,
 314, 316, 322, 327, 342, 344, 346, 376, 380
Product Quality 19-21, 28, 80, 86, 108-109, 120, 125, 169-176, 233, 265, 274, 293, 327,
 348, 352, 354, 356, 368, 376, 380, 402
Resources and Cost 14, 28, 44-45, 79, 86, 109, 120, 125, 145-156, 263, 293-294, 296, 303,
 310, 312, 322, 327, 334, 336, 338, 340, 366
Schedule and Progress 13, 20, 27-29, 78-79, 85-86, 97-98, 101, 108-110, 129-148, 293-294,
 398, 303-304, 306, 308, 322, 327, 330, 332, 366, 368, 376
Technical Adequacy 14, 20, 28, 80, 86, 109, 120, 126, 187-199, 233, 244, 274, 303, 320,
 327, 364

Issues
Prioritizing 26-27, 29-30, 75-82, 104, 108

— L —

Lack of Information 26- 27, 76-77

Leading Indicator 234-236, 274, 278

— M —

Measure
Capability Maturity Model Level 32, 120, 182-183, 358-359
Changes Implemented 11, 22
Components Designed 43
Components Implemented 7, 161, 185
Components Integrated and Tested 113, 185
Cost Profile 57-59, 88, 93, 303, 312
Cost Variance 338
CPU Throughput 32, 120, 188, 190
CPU Utilization 32, 120, 188-189, 329, 373
Cyclomatic Complexity 32, 120, 137, 176, 281, 356-357, 380
Database Size 32, 120, 159, 163
Defect Density 102, 120, 126, 171, 173, 327, 329, 354-356, 380
Effort 86, 109, 120, 124-125, 131-132, 140, 147-148, 152, 155, 179, 231, 233-236,
 243-250, 254-260, 265, 267, 269, 271-274, 278, 293-294, 296, 298, 310, 322, 327, 334,
 366, 386, 404, 481, 484-485, 492
Failure Interval 376

Part 7 - Supplemental Information

Page 527

Function Points 87, 99, 166, 173, 245, 249, 253, 255-256, 447, 470
Functional Size/Effort Ratio 86, 99, 109, 166, 186, 322, 344, 376
I/O Throughput 120, 188, 192, 483
I/O Utilization 120, 188, 191
Lines of Code (LOC) 87-88, 98, 100-101, 109, 111, 120, 124-125, 159-162, 173, 178, 185,
 199, 211-212, 215-217, 229, 244-245, 253, 255, 257, 268, 296, 298, 314, 320, 342, 360,
 364, 380
Memory Utilization 88, 120, 188, 193, 243, 268
Milestone Dates 79, 85-86, 99, 108-109, 120, 131-132, 155, 230, 294, 298, 304, 322, 330,
 404
Number of Components 134, 161, 256, 356, 368-369
Paths Tested 120, 133, 137
Problem Reports 90, 93, 100-101, 108-109, 120, 133, 138, 159, 171-173, 253, 257,
 276-280, 282, 327, 348, 352, 362, 368-369, 373, 380
Product Size/Effort Ratio 86, 99, 109, 120, 125, 184-185, 318, 360, 445
Requirements Allocated 165
Requirements Tested 135
Requirements 73-74, 77, 82, 86, 88-97, 99, 104-105, 111, 165, 212, 214, 225, 232-233, 245,
 247, 254, 256, 263, 265, 268, 274, 278, 281-283, 322, 327, 329, 344, 376, 385-386,
 392-393, 395-396, 404, 417, 447, 481, 484, 497
Resource Availability Dates 120, 154-155
Resource Utilization 86, 88, 120, 156, 327, 340
Response Time 86, 88, 120, 195, 197, 268, 276, 303, 316, 327, 346
Reviews Completed 120, 139
Rework Effort 87, 120, 177, 179, 327, 332, 348, 362, 417, 490
Rework Size 87, 120, 177-178, 417, 490
Schedule Variance 327, 338
Staff Experience 82, 120, 149, 327, 336
Staff Level 86, 148, 278, 329, 368
Staff Turnover 82, 120, 150, 318
Storage Utilization 120, 188, 194
Technical Performance 86, 120, 196-197, 233
Test Cases Completed 135-136, 191

Measurement
Benefits
Tools 92, 99, 105, 212, 229, 244, 255, 257, 273

Measurement Analyst 97, 105, 268, 271-272, 282-283

Measurement Category 30, 84-99
Complexity 86, 99, 120, 159, 164, 169, 175, 188, 211-212, 252, 257, 268, 276, 278, 281,
 356, 357, 380-381
Effort Profile 148
Environment Availability 86, 120, 145, 154, 156, 182, 196, 340
Functional Size and Stability 86, 99, 109, 120, 133, 141, 157, 159, 164-167, 184, 198, 322,
 344, 376
Incremental Capability 85-86, 109, 120, 129, 141-142, 308
Milestone Performance 86, 99, 109, 129, 131, 133, 151, 184, 198, 294, 298, 304, 322, 330,
 376
Process Maturity 86, 107, 120, 154, 182-183, 327, 358-359
Product Size and Stability 86, 99, 109, 120, 133, 141, 157, 159-164, 171, 175, 177, 184,
 198, 296, 298, 314, 342, 380
Productivity 78, 80, 86, 88, 92-93, 101-102, 108-110, 120, 126, 131, 141, 147, 150, 154,
 159-160, 166, 181-182, 184-186, 198, 217, 225, 233, 245, 250, 253-254, 257-260, 276,
 278, 283, 303, 318, 327, 360, 407

Part 7 - Supplemental Information

Page 528

Schedule Performance 151
Target Computer Resource Utilization 86, 88, 164, 187-196, 316, 346
Technology Impacts 86, 109, 120, 126, 187, 198-199, 320, 364
Work Unit Progress 79, 85-86, 109, 120, 129, 131, 133-140, 159, 171, 175, 177, 214, 233,
 265, 271, 282, 306, 322, 332, 366, 368, 452

Measurement Categories
Questions Addressed by 84-87, 123, 134-143, 148-150, 153, 155-156, 160-163, 165,
 166-167, 172-179, 183, 185-186, 189-195, 197, 199
Table Mapping Categories to Measures 73, 109

Measurement Definitions 102, 202, 215

Measurement Plan 74, 95, 102-105, 108, 110, 202, 212

Measurement Process 73, 75, 78-80, 83, 92-93, 96, 97, 103, 105, 110, 203, 211, 215, 224, 229

Measurement Results 73, 92, 215, 224, 229, 234, 237, 239, 280

Measurement Tables 119-125, 127-202

Measures see also Data
Collecting -- see Data Collection
Definition of Term 100, 121
Selecting 83-89, 93, 95, 108, 225-226, 237, 247-249, 251-257

— N —

Non-Development Items (NDI) 120, 160-161, 173, 197-199, 400, 407

Normalization -- see Data normalization and aggregation

— P —

Performance Analysis 237, 264, 269, 273-283, 291, 327, 330, 332, 334, 336, 338, 340,

 342-344, 346, 348, 352, 354, 356, 358, 360, 362, 364, 368, 376, 380

Planned values -- see Expected Values

Plans, Evaluation of -- see Feasibility Analysis

Problem Report Trends Measures 120, 133, 138, 159, 171-173

Problems 75-77, 79-80, 82, 86-87, 92-93, 98, 138, 151, 156, 159, 171-172, 174, 214, 220,

 223-225, 229, 233-234, 245, 268-269, 272-274, 277-280, 283, 404, 483

Product Quality Issue 80, 86, 109, 125, 233, 265, 274, 354

Project Objectives 73, 76-77, 80-81, 108, 269, 277, 282

— R —

Risk Assessment 73, 75-78, 81-82

Risk Management 77-79, 82, 103, 108, 220, 223, 225-226

— S —

Structure 90-93, 96-98, 102, 104, 110-111, 175-176, 215-217, 226, 252, 266

— T —

Tailoring the Measurement Process 73-76, 78, 83, 85, 93, 95, 102, 107, 110, 209, 212, 221,

Part 7 - Supplemental Information

Page 529

 224, 244, 254-255, 283

— W —

Work Breakdown Structure (WBS) 91, 124, 398, 403, 405, 414-415, 417, 445

Part 7 - Supplemental Information

Page 530

Practical Software Measurement Guide
Evaluation and Comment Form

We welcome any comments that will help us improve Practical Software Measurement. Please
provide your inputs via hardcopy or email using the information format provided below.

PSM Support Center Phone: (401) 832-4581
Cheryl Jones FAX: (401) 832-2130
Naval Undersea Warfare Center DSN Prefix 920
Code 2232 email: psm@csd.npt.nuwc.navy.mil
1176 Howell Street
Newport, RI 02841-1708

Name Date
Organization
Street Address

E-mail Address
Telephone Fax

Version of PSM Reviewed 3.1 Part Commented On:
() The Software Measurement Process () Measurement Analysis and Indicator Examples
() Tailoring Software Measures () Software Measurement Case Studies
() Measure. Selection & Specification Tables () Supplemental Information
() Applying Software Measures () Additional Implementation Guidance

() Check here if you want to receive updates to the Guide

Overall value: Explanation:
() Excellent
() Good
() Fair
() Not Useful

General Comments:

Specific Comments on Sections:
Section: Page # Comments:

Use additional sheets if more space is needed.

Part 7 - Supplemental Information

Page 532

PSMPSMPSMPSM
DEPARTMENT OF DEFENSE
IMPLEMENTATION GUIDE

PSM ADDENDUM

PSM Addendum

Page 534

PSM Addendum

Page 535

DEPARTMENT OF DEFENSE IMPLEMENTATION GUIDE

The PSM guidance is equally applicable to government and industry projects. This
addendum provides specific information to help implement software measurement in
the DoD acquisition environment. This environment is generally characterized by:

• formal two-party contractual agreements

• the use of integrated product teams

• acquisition policy driven management controls and performance measurement
requirements

• the development and maintenance of relatively large and complex information,
communications, and weapons systems

This addendum focuses on the DoD specific requirements related to the PSM
tailoring process. It is comprised of 5 chapters:

• Chapter 1, Measurement in the Acquisition Process - describes some of the
effects of acquisition reform in the DoD environment.

• Chapter 2, Measurement for Integrated Product Teams - provides some insight
into implementing measurement within the program IPT structure.

• Chapter 3, Putting Measurement on Contract - provides examples of contract
wording to implement measurement on a contract. It describes the current
acquisition and contract implementation guidelines that have proven to support
identified measurement requirements.

• Chapter 4, Using Work Breakdown Structures - shows various Work
Breakdown Structures (WBSs) and how to use them to assist in using
measurement to facilitate management of the work being performed.

• Chapter 5, Integrating Measurement with Earned Value - describes the Earned
Value program management methodology and how to implement it in
conjunction with a measurement process.

PSM Addendum

Page 536

PSM Addendum

Page 537

TABLE OF CONTENTS

CHAPTER 1 - MEASUREMENT IN THE ACQUISITION PROCESS539

1.1 Pre-Acquisition Activities..539

1.2 Acquisition Life Cycle..540

1.3 Software Measurement in the Acquisition Process542

CHAPTER 2 - MEASUREMENT FOR INTEGRATED PRODUCT TEAMS545

CHAPTER 3 - PUTTING MEASUREMENT ON CONTRACT547

3.1 Overview of Contracting Process...547

3.2 Contract Planning and Preparation ..547

3.3 Proposal Evaluation...548

3.4 Negotiation ...548

3.5 Contract Modifications ..549

3.6 Sample RFP Wording...549

3.6.1 Requirements for Software Measures..549

3.6.2 Developer Access ...550

3.6.3 Data Alternatives...551

3.6.4 Draft Measurement Plan..551

3.6.5 Proposal Evaluation Data ..551

CHAPTER 4 - USING WORK BREAKDOWN STRUCTURES........................553

CHAPTER 5 - INTEGRATING MEASUREMENT WITH EARNED VALUE559

PSM Addendum

Page 538

PSM Addendum

Page 539

CHAPTER 1 - MEASUREMENT IN THE ACQUISITION PROCESS

Acquisition reform has streamlined the Department of Defense and other government
agencies’ methods for systems acquisition, development, and sustaining engineering.
The government has a fiduciary responsibility to ensure that funds are adequately
managed. Measurement has become recognized as a cost-effective tool for the
acquisition and technical management of software-intensive systems. This chapter
explains how measurement and the Practical Software Measurement (PSM) process
fits into the overall acquisition process.

1.1 Pre-Acquisition Activities

Software technology and mission needs evolve rapidly. As such, a better understanding
of the capabilities of technology and user requirements must often be obtained before
the formal acquisition process can begin. The DoD relies on two strategies to develop,
demonstrate, and evaluate emerging technologies prior to the start of an acquisition.
These include Advanced Technology Demonstration (ATD) and Advanced Concept
Technology Demonstration (ACTD). Although these demonstrations precede the
formal acquisition process, they still require measurement to provide insight into
program status.

ATDs evaluate the feasibility and maturity of an emerging technology. They provide a
relatively low-cost approach to assess technical risks and uncertainties of critical
technologies prior to incorporating these technologies into an acquisition program. A
successful ATD often leads to the start of an acquisition program, or its results may be
integrated into a larger acquisition effort.

ACTDs help to respond quickly to urgent military needs. ACTDs employ available
technologies that frequently have been successfully demonstrated in an ATD. In an
ACTD, a system is designed, fabricated, and then demonstrated in realistic exercises.
This builds an understanding of the utility of the system, supports development of a
concept of operations, and elicits requirements by placing a limited, demonstrable
capability into the hands of the user.

ATD and ACTD programs need to be managed correctly. The PSM process can be
applied to these efforts, just as it does to any other program. However the range of
issues may be narrower, since the objectives of these demonstrations are limited.
Moreover, the ideal ATD or ACTD should not only demonstrate that something can be
done, but should also provide quantitative information about the likely cost and

PSM Addendum

Page 540

resulting quality of a product from the demonstrated technology. This requirement can
be supported by measurement.

Measurement results from ATDs and ACTDs can be useful in the early stages of the
acquisition life cycle, as explained below.

1.2 Acquisition Life Cycle

The acquisition life cycle begins with the definition of a need and a strategy to satisfy
that need. Typically, needs are derived from the organization’s mission and threat
environment. A successful acquisition program delivers the required capability within
established cost, schedule, and quality objectives. The DoD Acquisition Life Cycle
depicted in Figure 8.1-1 defines a series of acquisition phases and related milestones.
This sequence of activities is required for all major acquisition programs, included in
Acquisition Category (ACAT) 1, IA and II. Each milestone results in a decision on
whether to progress to the next phase. Traversing the complete life cycle may require
many years.

Milestone 0

Approval for
Conduct
Concept
Studies

Milestone I

Approval to
Begin a New
Acquisition
Program

Milestone II

Approval to Enter
Engineering &
Manufacturing
Development

Milestone III

Production or
Fielding/
Deployment
Approval

Phase 0

Concept
Exploration

Phase I

Program
Definition &
Risk
Reduction

Phase II

Engineering &
Manufacturing
Development

Phase III

Production,
Fielding/
Deployment, &
Operational
Support

Determination
of Mission

Need

Demilitarization
& Disposal

Acquisition Milestones & Phases

Figure 8.1-1. Acquisition Life-Cycle Phases Milestones

The acquisition life cycle defines a systematic approach for approving work and
ensuring that the intended product is delivered within program objectives. Figure 8.1-
2 lists the objectives of each acquisition phase and the measurement activities that
support achieving those objectives.

PSM Addendum

Page 541

Objectives Measurement
Activities

Phase 0
• Evaluate alternative strategies
• Identify most promising concept(s)
• Identify risks and initiate risk management
• Develop acquisition strategy and

objectives
• Define cost and schedule baseline

Phase 0
• Analysis of historical data

from similar programs to
support Rough Order of
Magnitude (ROM) estimates

• Quantitative Risk
Management

• Analysis of Alternatives
Phase 1
• Define detailed design and capabilities
• Demonstrate critical technologies
• Prove critical process attainable
• Develop supporting analysis for a

Milestone 2 decision

Phase 1
• Independent Cost Estimates
• Requirements measurement

process
• Analysis of Alternatives
• Contractor proposal

evaluations
• Historical analysis
• Measurement plan
• Cost as an Independent

Variable (CAIV)

Phase 2
• Develop a stable requirements baseline
• Validate manufacturing/production

processes
• Produce the first system
• Test system capabilities against mission

needs and specification requirements

Phase 2
• Independent Cost Estimates

(ICE)
• Requirements measurement

process
• Contractor proposal

evaluations
• Historical data analysis
• Measurement plan
• Measurement process in

place
Phase 3
• Establish production and support base
• Achieve operational capability meeting the

users needs
• Conduct follow-on operational and

production verification testing

Phase 3
• Full system measurement

process

Phase 4
• Determine if major upgrades to a system

in production are warranted
• Establish the appropriate baseline

Phase 4
• Sustaining engineering

measurement process

Figure 8.1-2. Phase Objectives and Measurement Activities

Neither the acquisition life cycle nor PSM make any assumptions about the technology
or methodology to be employed in developing the system under acquisition. Examples
of different acquisition approaches include systems based on Non-Developmental
Items (NDI), use of Joint Applications Development (JAD) techniques, and

PSM Addendum

Page 542

implementation of Rapid Application Development (RAD) processes. Measurement
still applies in these acquisition approaches, as explained below.

For programs considered as NDI, where little or no development is required, an
Integrated Process and Product Development (IPPD) approach should be employed as
an independent evaluation and planning activity. In this case, measurement would not
only consider performance and delivery cost, but also the cost of integrating and
fielding the system, training, maintenance, long-term support, logistics, disposal, and
follow-on products.

The identification of a need and the development of a set of requirements are required
during a RAD or JAD. Additionally, some set of testable requirements must be
developed along with associated measures. This enables the developer to validate the
development process and assess the quality of the product.

1.3 Software Measurement in the Acquisition Process

During each phase of the acquisition life cycle, a measurement process as illustrated in
Figure 8.1-3 can be applied to support contract requirements for a software-intensive
system. The acquisition life cycle contains two major activities related to a contract,
acquisition planning and acquisition management. A separate contract may be
established to support each phase.

Software Program
Team

Data Actions

External
Constraints

Issues, Objectives, Software
Process Characteristics

Measurement
Needs

Software Measurement Process

Tailor
Measures

Apply
Measures

Implement
Process

Figure 8.1-3. Software Measurement Activities

During acquisition planning, the contract is established and the mechanisms necessary
to effectively manage the contract are put in place, including:

PSM Addendum

Page 543

• The Integrated Product Team (IPT) is established as a cooperative forum for
making decisions.

• The Work Breakdown Structure (WBS) is defined to itemize the products to be
delivered and the tasks to be performed.

• The Earned Value (EV) Plan is drafted to assign budget and schedule to each of
the products and tasks defined in the WBS.

• The Risk Management Plan is drafted to identify potential obstacles to program
success and contingencies for dealing with them.

• The Software Measurement Plan is drafted to define the data to be collected and
the analysis to be performed to determine whether the program is progressing
according to plan.

As shown in Figure 8.1-4, software measurement results feed into the Earned Value
reporting and risk management processes. Risk, measurement, and Earned Value
information are all used by the IPT to track program status and to make decisions.

Risk
Management
Plan

Measurement
Plan Financial

Performance
Plan

Assess
Risks Tailor

Measures Establish
Budgets

Manage
Risks Apply

Measures Evaluate
Performance

Figure 8.1-4. Quantitative Software Management

PSM Addendum

Page 544

PSM Addendum

Page 545

CHAPTER 2 - MEASUREMENT FOR INTEGRATED PRODUCT TEAMS

Implementing many of the streamlining initiatives established by DoD acquisition
reform policy requires a close working relationship between the developer and the
acquiring organization. The IPT provides a mechanism for implementing this
relationship. IPTs may be the primary users of measurement results in many
programs. This chapter explains how measurement is implemented through an IPT.

In May of 1995, the use of IPTs became policy for all DoD programs. The use of
IPTS has been incorporated into DoD Directive 5000.1 and DoD Regulation 5000.2,
and defines different levels of IPTs, such as the Overarching IPTs (OIPTs), the
Working-Level IPTs (WIPTs), and the Program IPTs.

The IPT concept is based on the approach of all parties working together to ensure
successful implementation of individual programs. IPTs can be formally chartered or
they can be informal working groups. They can function at levels that range from one
team for multiple programs in an organization to small teams addressing one aspect of
a single program. Implementation of the IPTs concept does not mean that an
organization needs to restructure. The team is not the end goal, but rather the means
through which much of the work is accomplished, including measurement. Figure 8.2-
1, extracted from “A Guide for Leading Successful Integrated Product Teams,”
describes how the government participates in various IPTs. It is easy to see that
measurement plays an important role in almost every aspect of “Focus” and
“Participant Responsibilities.”

A typical industry IPT would consist of two tiers. The first-tier team provides
strategic direction, corporate oversight, and review. The measurement input to this
team is at a high “management” level to provide summary information and trend
analysis. This team should be a cross-functional team to optimize the chances for
success.

The second tier of a typical industry IPT is made up of multiple sub-teams. These
sub-tier teams, should also be multi-disciplinary, rather than functionally oriented.
Each team should have a broad perspective of the product, process, and organization,
rather than a centralized viewpoint. Each team should also have a specific charter that
identifies expectations and responsibilities for program support. Sub-tier team leaders
should also be members of the next higher tier team. The measurement requirements
of sub-tier teams are determined by their domain. The teams are responsible for
aggregation of their measures for the first-tier team.

PSM Addendum

Page 546

Organization Teams Focus Participant
Responsibilities

Measurement
Relationship

OSD and
Components

OIPT • Strategic
Guidance

• Tailoring
• Program

Assessment
• Resolve Issues

Elevated by
WIPTs

• Program Success
• Functional Area

Leadership
• Independent

Assessment
• Issue Resolution

• Milestone
Estimates

• Feasibility
Studies

• Earned Value
• Estimates to

Complete

 WIPTs

• Planning for
Program
Success

• Opportunities
for Acquisition
Reform
(innovation,
streamlining)

• Identify/
Resolve
Program
Issues

• Program
Status

• Functional
Knowledge &
Experience

• Empowered
Contribution

• Recommendation
s for Program
Success

• Communicate
Status &
Unresolved Issues

• Milestone
Estimates

• Feasibility
Studies

• Estimates to
Complete

• Earned Value

 Program
Teams &
System
Contractors

 Program
 IPTs

• Program
Operation

• Identify &
Implement
Acquisition
Reform

• Manage Complete
Scope of
Program,
Resources & Risk

• Integrate
Government &
Contractor Efforts
for Program
Success

• Report Program
Status & Issues

• Design,
Implementation,
and Testing
measures for all
identified issues

Figure 8.2-1. DoD IPT Types, Focus, and Responsibilities

The IPT concept differs from the traditional program organization concept, which
usually focuses on single-function disciplines. IPTs are responsible for designing the
product and its associated processes, and also for planning, tracking, and managing
their own work and the processes by which they do their work. Successful application
of IPPD rests heavily on the ability to form, align, empower, and lead these cross-
functional teams.

The teams focus is on achieving set goals and objectives. Measurement is a means for
creating and maintaining that focus. When measures provide meaningful indicators,
IPTs can clearly understand their progress and better allocate resources for identified
risks and the remaining tasks. Identification and management of risks are key
responsibilities of each IPT.

PSM Addendum

Page 547

CHAPTER 3 - PUTTING MEASUREMENT ON CONTRACT

When software is acquired from an external organization, the program’s measurement
requirements need to be formally defined. This chapter explains how measurement is
implemented in a contract between a government organization and a private
contractor. These concepts also apply in varying degrees when software is acquired
from another government organization via a Memorandum of Agreement (MOA) or
Inter-Service Support Agreement (ISSA).

3.1 Overview of Contracting Process

The PSM measurement-tailoring process often supports a formal acquisition in which
proposals are solicited and a developer is selected. Measurement must be coordinated
within each of the four activities of the contracting process:

• contract planning and preparation

• proposal evaluation

• negotiation

• contract modifications

The following subsections describe each of these activities in more detail. Section 3.6
provides sample wording that may be inserted into a Request For Proposal (RFP) or a
contract, along with the rationale for each contract requirement.

Through the contracting process, the program management team ensures that the
necessary measurement mechanisms are in place to support the acquisition objectives
for the program’s current phase. This contracting process applies to both the
development and sustaining engineering phases, although the issues and measures may
differ. When adding measures to an existing contract, the contract planning and
preparation and proposal evaluation activities are generally not implemented.

3.2 Contract Planning and Preparation

During contract planning and preparation, software measurement requirements are
identified and documented. The RFP provides a vehicle to communicate these
requirements to potential contractors. Section 3.6 contains sample wording that may
be inserted into a RFP for this purpose. In the RFP, the program management team

PSM Addendum

Page 548

may also request historical data to substantiate the developer’s proposal and to
conduct an independent feasibility analysis of the proposed software development plan.
Section 3.6 also provides wording to request this data. In parallel with RFP
development, the program management team usually develops independent estimates
of size, schedule, effort, and cost to evaluate the contractors’ proposals.

3.3 Proposal Evaluation

Contractors respond to an RFP with a proposal that explains how their measurement
process will meet the program manager’s information needs. Each measurement
process proposed by the prospective contractors must be evaluated during the proposal
evaluation process. This evaluation includes assessing the developer’s understanding
of the issues specified in the contract, the effectiveness of the process, and the
measures that the developer plans to use to address the issues. The evaluation should
assess the adequacy of the proposed measurement data definitions. An on-site
evaluation at each developer’s facility may be performed to validate the proposed
measurement process identified in each proposal.

The proposal evaluation team also needs to assess the feasibility of each proposal’s
estimates of size, schedule, effort, and cost. The team may use software development
cost and schedule estimation models to compute performance parameters and look for
inconsistencies that need to be reconciled. In addition, the developer’s estimates
should be compared to the independent estimates developed by the program office.
Feasibility of the proposed plan is also evaluated with respect to the historical data
provided by the contractor.

3.4 Negotiation

Once a developer has been selected, negotiation helps to define the measurement
requirements in the contract. In the proposal, the developer should have identified any
concerns with the program office’s specified issues and measures, and proposed
appropriate alternatives. Alternate measures must adequately address the program
office issues and be used within the developer’s process to manage the software
development.

The developer's proposal should identify any problems associated with the program
office’s measurement guidance, including the data items to be collected, the collection
and reporting levels, and the method for counting actual data. The developer should
describe the proposed implementation of the measures, including definitions,
estimation techniques, actual measurement methods, and data reporting mechanisms.
All of these items must be agreed upon during negotiations. The results of the

PSM Addendum

Page 549

negotiations should be documented in the contract or in an approved software
measurement plan.

3.5 Contract Modifications

It is important to understand that the software issues will change during the program.
The measurement and contracting process has to be flexible to accommodate these
changes. Different measures may be required to address new or modified issues, and
changes may be required for data definitions, data elements, or reporting mechanisms.

Contract modifications may also be necessary to implement measurement on existing
programs that did not originally require measurement. Even in these situations, the
program management team should define program issues and measurement
requirements. The team should work with the existing developer to determine if any
measures are already available to address these issues.

3.6 Sample RFP Wording

This section contains sample wording that may be inserted into a Request For
Proposal (RFP), contract, or other agreement between the program manager and
developer. The sample wording may be used to request software measurement data,
address questions about that data, and develop a software measurement plan.

Each of the following sections contain a description of the rationale for each request,
followed by sample wording (in quotes in the shaded area) that may be directly
inserted into an agreement.

3.6.1 Requirements for Software Measures

Contract wording to require collection of measurement data should be specified. In the
RFP, the program management team should identify the software issues and the
measures required to address them. The program management team should define the
characteristics of each required measure, including the data items to be collected, the
collection and reporting level, and the method for counting actual data as complete.
The following paragraph specifies monthly reporting, but this may be adjusted as
appropriate for each program.

“The developer shall provide the software measures specified in Paragraph XXX on
a monthly basis. For each measure, data shall be provided for each data item at the
specified collection level. Data shall not be considered as actuals until the criteria
for counting actuals has been successfully met.”

PSM Addendum

Page 550

Requirements for most software measures should include both planned and actual
performance data. Any changes to the planning data should be identified, quantified,
and provided to the program manager. A few measures may not be accompanied by
planning data (such as defect and requirements stability data).

“For all of the measures specified in Paragraph XXX, the developer shall provide an
initial plan and submit periodic actual data. Any time that the planning data for any
of the detailed measurement parameters changes, the developer shall provide an
updated plan within 30 days of the change.”

For each measure, the developer should propose measurement definitions,
methodologies, and data reporting mechanisms.

“For each measure specified in Paragraph XXX, the developer shall provide a
measurement definition, an estimation methodology, the method used to measure
actual data, and the data reporting format and associated mechanism. This
information shall include a description of any tools utilized.”

Planned and actual data shall be based on the same measurement methodology. Any
changes in definitions, estimation methodologies, or actual measurement approaches
shall be documented within 30 days of the change and shall require approval of the
Program Manager.”

The data should be provided in a timely manner, as soon as possible after data
collection occurs. The sample wording in this section recommends that data should be
reported within 30 days, but this time period may be modified. The lag time between
data collection and reporting should be minimized to provide early-warning indicators.

“The required measures shall be delivered within 30 days after the data is
collected.”

3.6.2 Developer Access

Throughout the development, the program management team should periodically
review the measurement process. In addition, there will be questions about some of
the data. The acquisition program office needs to have access to the developer to
answer questions and to gather the subjective data required for interpretation of the
quantitative data.

“The developer shall provide direct access to the program team to facilitate open
communications with respect to the measurement process. The developer shall also
provide a rationale for changes, answer questions, and provide clarifications
regarding the measurement process and associated data and information.”

PSM Addendum

Page 551

3.6.3 Data Alternatives

The measures specified in the RFP represent the initial issues of the program manager.
The developer may request substitution of an alternate software measure if the
alternative measure provides similar insight into the same software issue. The
alternative measure should be readily available and used internally in the developer’s
process.

“In the event that a specified measure is unavailable, the developer shall submit a
request for substitution. This request shall identify an alternative measure with a
data definition, a rationale for the change, a description of how this measure
addresses the identified issue, and a description of how this measure will be used
internally. The alternative measure must be readily available from the software
development process.”

3.6.4 Draft Measurement Plan

The developer should be required to develop a measurement plan that specifies which
issues and measures will be addressed during the program. The plan should identify
the proposed software measurement process and specify how the developer will use the
measurement information.

“The developer shall submit a draft measurement plan that specifies the issues to be
addressed, the measures to be utilized, and definitions of specified measures and
measurement methodologies. This plan shall identify the measurement approach to
be used, including a description of how measurement information will be used in the
developer’s internal management of this program, how data will be collected, points
of contact, responsibilities, and organization communications and interfaces.”

3.6.5 Proposal Evaluation Data

Proposal evaluation should include an assessment of the feasibility of the software
development plan, based on information provided in the proposal, historical data on
the developer’s performance, and independent estimates prepared by the program
management team. Information used for this assessment includes:

• Required Productivity - The developer should provide an assessment of the
productivity required to successfully complete the project, based on the planning
parameters provided in the proposal. The developer should also include a
definition of any tools or methodologies used.

• Product Size, Effort, Milestone Dates - The developer should submit estimated
data for each of these measures to allow the proposal evaluation team to do an

PSM Addendum

Page 552

independent feasibility assessment on each bidder. The data should describe the
data definitions and estimation methodology.

• Historical Data - The developer should submit actual data (product size, effort,
milestone dates, cost, and productivity) from completed programs. Data should be
provided from programs that are similar in domain, size, and complexity to the
proposed program.

The first two items are usually required parts of the proposal, whether or not the
measurement approach described in this Guide is applied. The following sample RFP
wording is suggested to collect historical data to substantiate the potential developer’s
proposal and to conduct the feasibility analysis:

“The developer shall provide historical data from at least three completed programs
to support the proposal. The technical characteristics of the historical programs
shall be similar to the proposed system with respect to domain, size, and complexity.
If the developer does not have experience within these criteria, data from other
completed programs shall be provided. The data shall include measures of size,
schedule, effort, cost, and productivity by WBS element. Any models and
methodologies used shall be documented for each historical program to a sufficient
level of detail to allow replication by the evaluation team.”

A software measurement plan should be developed to ensure the required information
has been identified and a definitive process is established. Figure 2.4-2 in Part 2 of the
PSM Guide contains a sample outline of a Software Measurement Plan. This plan
should be modified as needed to accommodate different program information needs
and developer processes. It may be included as part of the Software Development
Plan (SDP), Software Maintenance Plan (SMP), or similar planning document.

PSM Addendum

Page 553

CHAPTER 4 - USING WORK BREAKDOWN STRUCTURES

This section contains examples of Work Breakdown Structures (WBS) for
information, communication, and weapons systems. These examples can be used as a
basis for a contract WBS and as a tool for collecting some measures, such as work
unit progress. This material describes how to use the WBS with the development
organization.

A WBS is an important management tool used to identify all accountable areas in the
development, operations, or maintenance process. In a commercial environment, the
WBS must be directly linked to the cost accounting system. This linkage would be at
the same level of the WBS as the work packages that are managed and reported. In a
government environment, a time card system can be implemented that would be
directly tied to the WBS. By applying measures at these WBS levels, a manager can
quickly focus on areas that directly address their issues. A WBS is normally first
developed to define products at three or four levels in the system structure. The WBS
can be expanded to include the process information that is directly related to the
product.

Figure 8.4-1 shows an example of a simple software program with two CIs and a two-
activity process model. Each of the activities applies to each of the CIs. In addition
the management activity applies across the system. The intersections between the
process and product structures define five work packages. Usually a budget and
schedule are assigned for each work package. These elements of a WBS are
commonly organized into a hierarchy diagram as shown in Figure 8.4-1.

Products

A
ct

iv
iti

es

CI A CI BPROGRAM

DEVELOP

TEST

MANAGE

SYSTEM

CI A CI B

DEV TEST DEV TEST MGMT

Figure 8.4-1. Mapping Program Products and Activities

A work package could correspond to something as large as developing an entire
Configuration Item (CI) over a period of years or as small as testing a single unit
within one week. Most programs define work packages for each major activity, such
as requirements analysis, design, implementation, integration and test, and rework, for
each CI. However, to adequately address specific program issues it may be necessary
to collect one or more types of data at a more detailed level.

PSM Addendum

Page 554

Figure 8.4-2 shows the final task in defining the WBS structure, mapping
responsibility for work packages to organizational elements.

$ $

$

$

$

$

$

$

Work Breakdown Structure
(WBS)

Organizational Breakdown
Structure

(OBS)

Legend
$ = cost account

S
U

B
P

R
IM

E

C
O

M
D

O
C

S
T

E
S

T
E

N
G

SYSTEM

CI A CI B

DEV TEST DEV TEST MGMT

P
R

O
JE

C
T

Figure 8.4.2. Cost Accounts

Figure 8.4-2 shows that WBS and organizational elements intersect. These
intersections usually correspond to the cost accounts that track budgets and
expenditures in most financial systems. These cost accounts define the interface
between the software measurement and financial reporting processes. Planning the
measurement process appropriately enables it to support the analysis of a program’s
financial situation.

Figure 8.4-3 contains a high-level WBS that can be used as a starting point for
development and support of a weapons system. This level may be the minimum level
required for contracts that require no insight for reporting purposes.

Weapons
Systems

Prime
Mission
Product

(PMP)

System
Engineering/

Program
Management

Training

Peculiar
Support

Equipment
(PSE)

Operational
 Site

Activation

Initial Spares
and

Repair Parts

Platform
Integration

System
Test and

Evaluation
Data

Common
Support

Equipment
 (CSE)

Industrial
 Facilities

Figure 8.4-3. Weapon System WBS

PSM Addendum

Page 555

Most likely, at least one level lower is reported in a WBS, as described in 8.4-
4. The challenge is to use the WBS to assist in reporting of issue-related
information. This is accomplished by expanding those areas of concern in the
WBS to allow data to be collected on the identified and expected issues. A
WBS also needs to accommodate the constraints of the cost accounting or data
collection system. A good guide to help develop a WBS is Military Handbook
881-B. It is important to remember that every data element collected should
be linked to a WBS element, either directly or indirectly, and the link should be
documented. Once the links are established, the automated collection
mechanisms can be put into place.

• Subsystem 1….n
(Specify Names)

• PMP Application
Software

• PMP System
Software

• Integration/
Assembly/Test/
Checkout

• Equipment

• Services

• Facilities

• Test and
Measurement
Equipment

• Support and
Handling
Equipment

• Construction/
Conversion/
Expansion

• Equipment
Acquisition or
Modernization

• Maintenance
(Industrial
Facilities)

• Test and
Measurement
Equipment

• Support and
Handling Equipment

• Technical
Publications

• Engineering Data

• Management Data

• Support Data

• Data Depository

• Development Test
and Evaluation

• Operational Test
and Evaluation

• Mock-ups

• Test and Evaluation
Support

• Test Facilities

• System Assembly,
Installation and
Checkout

• Contractor
Technical Support

• Site Construction

• Site/Ship/Vehicle
Conversion

Weapons
Systems

Prime
Mission
Product

(PMP)

System
Engineering/

Program
Management

Training

Peculiar
Support

Equipment
(PSE)

Operational
 Site

Activation

Initial Spares
and

Repair Parts

Platform
Integration

System
Test and

Evaluation
Data

Common
Support

Equipment
 (CSE)

Industrial
 Facilities

Figure 8.4-4. Weapon System WBS (reference MIL HDBK 881B)

In a commercial environment, those measures that include cost or effort data require
the cost accounting system to have the work unit codes tied directly to the desired
WBS reporting level. For time card systems, an audit check is normally conducted on
the time cards before they go into the accounting system. This may result in a delay in
the period of time when the actions are completed and information can be reported.
Some companies have upgraded their systems to daily reporting and have periodic
audits to ensure accuracy. For an in-house or government operation, it would be more
difficult to implement a time card system in which the reported effort is tied to a
specific WBS element. A time card system with work unit codes tied to a WBS would
normally be developed and maintained within the organization.

PSM Addendum

Page 556

For those measures requiring other data, such as defects, similar mechanisms must be
implemented at the appropriate WBS levels. The critical link back to the WBS is
often left out of a data collection effort. For example, defects could be linked to
rework in a specific CI. Therefore, a WBS element for rework on the CI must be
included, and a work unit code must be identified for the cost accounting system.

Figure 8.4-5 contains an expanded sample WBS that may be a subset of Figure 8.4-4,
or could describe a stand-alone software management effort. This sample WBS could
also be used within an organization to identify the lower-level elements that are
targeted for data collection.

• Requirements
Engineering

• System Architecture
• Configuration
Management

• Release Engineering
• Rework
• Security Certification
and Accreditation

• Other(s) (Specify)

• Test Plans

• Test Equipment and
Software

• Test Operations

• Installation of
Software Systems

• Equipment
• Software
• Operation

Systems

Application
Software

Build-1…n

System
Engineering/ Testbed

System
Qualification

Test

Operational
 Site

CSCI

• Requirements
Analysis

• Design
• Coding and

Module Testing
• Component

Integration and
Testing

• CSCI Testing
• Rework

– Redesign
– Recoding and

Module
Testing

– Component
Integration
and Retesting

CSCI n...

• Requirements
Analysis

• Design
• Coding and

Module Testing
• Component

Integration and
Testing

• CSCI Testing
• Rework

– Redesign
– Recoding and

Module
Testing

– Component
Integration
and Retesting

CSCI to CSCI
Integration and

Testing
Rework

• Redesign
• Recoding and Module

Testing
• Component Integration

and Retesting

Figure 8.4-5. Expanded Sample Software WBS

Figure 8.4-6 contains an example of an expanded WBS that can be used in
information system development and sustaining engineering. This example contains
many elements that appear to be outside the normal activities in a software
management effort, such as security certification and accreditation. A WBS should
identify all areas that may affect the total cost and schedule of the software or the rest
of the system.

PSM Addendum

Page 557

• Common Operating
Environment

• Graphical User
Interface

• Data Management

• Data Applications

• Interfaces to
External Systems

• Other(s) Specify

• Test Plans

• Test Equipment and
Software

• Test Operations

• Demonstration and
Test Sites

• Core Increments

• Post Core
Increments

• Equipment

• Software

• Operation

• Software
Maintenance
Engineering

• Configuration
Management

• User Support

• System Services

• Other(s) (Specify)

• Requirements
Engineering

• System
Architecture

• Configuration
Management

• Release
Engineering

• Rework

• Security
Certification and
Accreditation

• Other(s) (Specify)

• Program
Management

• Financial
Management

• Common Operating
Environment

• Graphical User
Interface

• Data Management

• Data Applications

• Interfaces to
External Systems

• Other(s) (Specify)

Systems

1st Increment System
Engineering

System
Test

Documentation Logistics
Support

Program
Management

Software
Development

and Integration
Tools

FieldingTrainingTestbednth Increment

Figure 8.4-6. Expanded Sample Information System WBS

After contract award, it is important to modify the WBS used during the selection
process and to map to the selected developer’s negotiated WBS. The revised WBS ties
the estimated measures of the government to the actual measures collected by the
developer. The revision also ensures that the cost account elements map to the same
WBS that is used for data collection.

PSM Addendum

Page 558

PSM Addendum

Page 559

CHAPTER 5 - INTEGRATING MEASUREMENT WITH EARNED VALUE

This Chapter describes how Earned Value can be used as part of the measurement
process.

Earned Value is an performance management approach that some organizations use to
assess the cost and schedule against the amount of work being performed. Earned
Value requires cost and schedule estimates to be identified with specific work
packages that have their own cost account. An example of this is illustrated below for
a work unit package in the detailed design, code and unit test phase of a software
development.

Earned Value is a management technique that relates resource planning to technical,
cost, and schedule requirements. All work is planned, budgeted, and scheduled in
time-phased “Planned Value” increments that constitute a cost and schedule
measurement baseline. An Earned Value Measurement System (EVMS) uses
Budgeted Cost of Work Performed (BCWP) as a basic Earned Value indicator. The
Budgeted Cost of Work Scheduled (BCWS) is used as the Planed Value indicator to
determine the Schedule Variance. The BCWP is compared with the Actual Cost of
Work Performed (ACWP) as the Actual Cost indicator to determine the Cost
Variance. The two major objectives of an Earned Value system are to encourage
contractors to use effective internal cost and schedule management control systems,
and to permit the customer to evaluate the status of deliverable products. The
following example was modified from the OUSD(A&T) Web site to illustrate the ease
of use of Earned Value on a software work unit package during detailed design, code
and unit test.

The example baseline plan in Figure 8.5-1 shows that six work units (A to F) should
be completed at an estimated cost of $100 for the period covered by this report. A and
B are associated with the detailed design of a component. A credit of $10 to A would
be given when a component is released to the team/individual responsible for the
detailed design of the component. An additional $15 credit is given to B when the
component design completes a successful peer design walkthrough. A credit of $10 to
C is given when the team begins coding of the component, and a credit of $25 to D
when the component has completed a successful peer code walkthrough. Finally, when
a component enters unit test, it is given a credit of $20 to E. A credit of another $20 is
given to F when it has successfully completed unit test. In some situations a
percentage of the allocated effort can be given credit if it is partially completed. This
depends on how the Earned Value system is established and how credit is allocated for
the work.

PSM Addendum

Page 560

Unit Design Unit Code Unit Test
A B C D E F Total

Planned Value ($) 10 15 10 25 20 20 100

Figure 8.5-1. Baseline Plan Work Units

As work is performed, it is “earned” on the same basis as it was planned, in dollars or
other quantifiable units such as labor hours. Planned Value compared with Earned
Value measures the dollar volume of work planned vs. the equivalent dollar volume of
work accomplished. Any difference is called a schedule variance. In contrast to what
was planned, Figure 8.5-2 shows that the code walkthrough D was not completed.
Work unit test E began, but nothing had been completed as shown by F. Therefore,
$35 of the planned work was not accomplished. As a result, the schedule variance
shows that 35 percent of the work planned for this period was not done.

Unit Design Unit Code Unit Test
A B C D E F Total

Planned Value ($) 10 15 10 25 20 20 100
Earned Value ($) 10 15 10 10 20 0 65

Schedule Variance 0 0 0 -15 0 -20 -35=-35%

Figure 8.5-2. Schedule Variance Work Units

Earned Value compared with the actual cost incurred (from contractor accounting
systems) for the work performed provides an objective measure of planned and actual
cost. Any difference is called a cost variance. A negative variance means more money
was spent for the work accomplished than was planned. Figure 8.5-3 shows the
calculation of cost variance. The work performed was planned to cost $65 and
actually cost $91. The cost variance is 40 percent.

Unit Design Unit Code Unit Test
A B C D E F Total

Earned Value ($) 10 15 10 10 20 0 65
 Actual Cost ($) 9 22 8 30 22 0 91
Cost Variance 1 -7 2 -20 -2 0 -26=-40%

Figure 8.5-3. Cost Variance Work Units

The organization can graphically represent Earned Value as a single chart for any part
of the development or work package, or for the entire program, as depicted in Figure
8.5-4.

PSM Addendum

Page 561

Earned Value Measurement

0

25

50

75

100

125

0 1 2 3 4 5 6 7 8 9 10

Month

D
ol

la
rs

 (
in

 T
ho

us
an

ds
)

Actual Cost
(ACWP)
Budgeted Cost
(BCWS)
Earned Value
(BCWP)

Cost
VarianceSchedule

Variance

1

3

2

Actual units of work weighted by dollars

1

Planned units of work weighted by dollars

Actual dollars

2

3

Figure 8.5-4. Earned Value Measurement

Earned Value can be used as an indicator for any identified unit of work that is
associated with estimated and actual cost/effort and schedule. Other measures can be
used as technical indicators for variance analysis, including requirements stability,
design stability, program size, and computer resource utilization. The Earned Value
approach benefits program management by requiring disciplined planning. The
availability of the Earned Value measures show the real variances from plans to
identify necessary corrective actions.

SUMMARY

Acquisition reform has streamlined DoD acquisition. In place of previously mandated
requirements, a series of guidance documents have been developed to promote the use
of best practices, including PSM. Each of the services has developed individual
streamlining approaches and guidelines for acquisition and development activities.
These guidelines are designed to facilitate management of individual programs, and
still provide the insight required for effective management of the program.

The Office of the Undersecretary of Defense for Acquisition and Technology
(OUSD/A&T) is responsible for implementing most of the acquisition reforms. Their
Web address is www.acq.osd.mil. Specific initiatives by each service include the
“Lightening Bolt Initiatives” by the Air Force, the “Acquisition Thrusts” by the Navy
and the “Initiatives with Thrusts” by the Army. A list of the initiatives for each
service can be found on the web at www.safaq.hq.af.mil/SAFAQ/ for the Air Force,
www.acq-ref.navy.mil/ for the Navy, and http://acqnet.sarda.army.mil/ for the Army.

PSM Addendum

Page 562

The following examples from the Navy web site provide suggestions to facilitate
getting reform into practice.

• Commit to quality customer focus and continuous improvement.

• Manage with early insight on program issues, rather than after-the fact oversight.

• Manage overall life-cycle cost not just initial acquisition cost.

• Treat total cost as an independent variable relative to user requirements.

• Make cost performance trade-offs early in the acquisition process.

• Put high priority on logistics and support cost visibility.

• Integrate oversight requirements with contractor program management scheme.

• Use past performance as a key factor.

• Achieve quality with statistical process control rather than with end item
inspection.

• Control only the performance specification giving contractors freedom for design
innovation.

Acquisition reform and acquisition streamlining is an ongoing effort that must be
supported by an effective measurement process. The measurement process must be
flexible to accommodate the ever-changing management issues and to ensure the
indicators have a solid foundation. The use of PSM will help ensure that the ideals of
acquisition reform are achieved.

	Cover
	Foreword
	Acknowledgments
	Software Measurement Principles
	Scope and Structure of this Guide
	How to Use this Guide
	TABLE OF CONTENTS

	Part 1 - The Software Measurement Process
	TABLE OF CONTENTS
	CHAPTER 1 - MANAGING A SOFTWARE-INTENSIVE PROJECT
	1.1 Motivation for Software Measurement
	1.2 Quantitative Software Management Disciplines

	CHAPTER 2 - SOFTWARE MEASUREMENT PROCESS OVERVIEW
	2.1 Basic Elements of the Software Measurement Process
	2.2 Software Measurement Principles
	2.3 Life-Cycle Application
	2.4 Measurement Implementation Roles

	CHAPTER 3 - TAILORING SOFTWARE MEASURES
	3.1 Measurement Tailoring Overview
	3.2 Identify and Prioritize Project Issues
	3.3 Select and Specify Project Measures
	3.4 Integrate Measures into the Software Process
	3.5 Organizational Software Measurement

	CHAPTER 4 - APPLYING SOFTWARE MEASURES
	4.1 Measurement Application Overview
	4.2 Collect and Process Data
	4.3 Analyze Issues
	4.4 Make Decisions

	CHAPTER 5 - IMPLEMENTING A MEASUREMENT PROCESS
	5.1 Measurement Implementation Overview
	5.2 Obtain Organizational Support
	5.3 Define Measurement Responsibilities
	5.4 Provide Measurement Resources
	5.5 Initiate the Measurement Process
	5.6 Using the Measurement Results
	5.7 Lessons Learned

	Part 2 - Tailoring Software Measures
	TABLE OF CONTENTS
	CHAPTER 1 – MEASUREMENT TAILORING OVERVIEW
	CHAPTER 2 – IDENTIFY AND PRIORITIZE PROJECT ISSUES
	2.1 Identify Project-Specific Issues
	2.2 Map Project Issues to Common Issues

	CHAPTER 3 - SELECT AND SPECIFY PROJECT MEASURES
	3.1 Measurement Selection Mechanisms
	3.2 Select the Measurement Categories
	3.3 Select the Applicable Measures
	3.4 Specify the Data Requirements
	3.5 Selecting and Specifying Measures for Existing Projects

	CHAPTER 4 - INTEGRATE MEASURES INTO THE SOFTWARE PROCESS
	4.1 Characterize the Software Environment
	4.2 Identify Measurement Opportunities
	4.3 Specify Measurement Implementation Requirements

	CHAPTER 5 - MEASUREMENT TAILORING EXAMPLE
	5.1 Project Scenario
	5.2 Identify and Prioritize Project Issues
	5.3 Select and Specify Project Measures
	5.4 Integrate Into the Software Process

	Part 3 - Measurement Selection and Specification Tables
	TABLE OF CONTENTS
	CHAPTER 1 - HOW TO USE THE TABLES
	1.1 INTRODUCTION
	1.2 HOW TO USE THE MEASUREMENT TABLES
	1.3 MEASUREMENT CATEGORY TABLES
	1.4 MEASUREMENT DESCRIPTION TABLES
	1.5 GENERAL MEASUREMENT SPECIFICATION TABLE
	1.6 ADDITIONAL GUIDANCE

	CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND SPECIFICATION TABLES
	SCHEDULE AND PROGRESS MEASUREMENT TABLES
	Milestone Performance
	Work Unit Progress
	Incremental Capability

	RESOURCES AND COST MEASUREMENT TABLES
	Personnel
	Financial Performance
	Environment Availability

	GROWTH AND STABILITY MEASUREMENT TABLES
	Product Size and Stability
	Functional Size and Stability

	PRODUCT QUALITY MEASUREMENT TABLES
	Defects
	Complexity
	Rework

	DEVELOPMENT PERFORMANCE MEASUREMENT TABLES
	Process Maturity
	Productivity

	TECHNICAL ADEQUACY MEASUREMENT TABLES
	Target Computer Resource Utilization
	Technical Performance
	Technology Impacts

	GENERAL MEASUREMENT SPECIFICATION TABLE

	Part 4 - Applying Software Measures
	TABLE OF CONTENTS
	CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW
	CHAPTER 2 - COLLECT AND PROCESS DATA
	2.1 Access Data
	2.2 Verify Data
	2.3 Normalize Data

	CHAPTER 3 - ANALYZE ISSUES
	3.1 Detailed Analysis Guidance

	CHAPTER 4 - MAKE DECISIONS
	4.1 Report Results
	4.2 Select Alternative
	4.3 Take Action

	CHAPTER 5 - GENERAL ANALYSIS CONCEPTS
	5.1 Measurement Indicator Defined
	5.2 Using Indicators During the Analysis Process
	5.3 Indicator Generation

	CHAPTER 6 - ESTIMATION
	6.1 Using the Analysis Model
	6.2 Estimators
	6.3 Estimation Process Overview
	6.4 Identify the Approach
	6.5 Map and Calibrate
	6.6 Perform Estimate
	6.7 Evaluate Estimates

	CHAPTER 7 - FEASIBILITY ANALYSIS
	7.1 Using the Analysis Model
	7.2 Indicator Baselines
	7.3 Feasibility Analysis Process Overview

	CHAPTER 8 - PERFORMANCE ANALYSIS
	8.1 Using the Analysis Model
	8.2 Performance Indicators
	8.3 Performance Analysis Process Overview
	8.4 Compare Plan versus Actual
	8.5 Assess Impact
	8.6 Predict Outcome
	8.7 Evaluate Alternatives

	Part 5 - Measurement Analysis and Indicator Examples
	TABLE OF CONTENTS
	CHAPTER 1 - MEASUREMENT INDICATOR EXAMPLE DESCRIPTION
	CHAPTER 2 - ESTIMATION
	2.1 Effort-Schedule Tradeoff
	2.2 Size-Effort Estimating Relationship
	2.3 Size-Schedule Estimating Relationship
	2.4 Problem Trend

	CHAPTER 3 - FEASIBILITY ANALYSIS
	3.1 Milestone Schedule
	3.2 Design Progress
	3.3 Incremental Build Content
	3.4 Effort Allocation
	3.5 Cost Profile
	3.6 Software Size
	3.7 Response Time
	3.8 Software Productivity
	3.9 Software Origin
	3.10 Feasibility of Plans

	CHAPTER 4 - PERFORMANCE
	4.1 Milestone Progress
	4.2 Design Progress
	4.3 Effort Allocation
	4.4 Staff Experience
	4.5 Cost and Schedule Variance
	4.6 Resource Utilization
	4.7 Software Size
	4.8 Requirements Stability
	4.9 Response Time
	4.10 Problem Report Status
	4.11 Problem Report Aging
	4.12 Defect Density
	4.13 Software Complexity
	4.14 Software Process Maturity
	4.15 Software Productivity
	4.16 Rework Effort
	4.17 Software Origin
	4.18 Design Completion
	4.19 Test Completion
	4.20 Readiness for Delivery
	4.21 Maintenance Status
	4.22 Maintainability

	Part 6 - Software Measurement Case Studies
	TABLE OF CONTENTS
	WEAPONS SYSTEM CASE STUDY
	CHAPTER 1 - PROGRAM OVERVIEW
	1.1 Introduction
	1.2 Program Technical Approach
	1.3 Program Management Approach

	CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION
	2.1 Software Program Planning
	2.2 Software Acquisition

	CHAPTER 3 - SOFTWARE DEVELOPMENT
	3.1 Tracking Development Performance
	3.2 Revising The Development Plan
	3.3 Software Delivery
	3.4 Epilogue

	INFORMATION SYSTEM CASE STUDY
	CHAPTER 1 - PROJECT OVERVIEW
	1.1 Introduction
	1.2 Air Force Business Process Modernization Initiative
	1.3 Project Description
	1.4 System Architecture and Functionality

	CHAPTER 2 - GETTING THE PROJECT UNDER CONTROL
	2.1 Evaluating the Software Development Plan
	2.2 Revising the Software Development Plan
	2.3 Tracking Performance Against the Revised Plan

	CHAPTER 3 - EVALUATING READINESS FOR TEST
	3.1 Increment 1
	3.2 Increment 2

	CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT
	4.1 Increment 1 Installation
	4.2 Software Support
	4.3 Epilogue

	SENSOR SUSTAINING ENGINEERING CASE STUDY
	CHAPTER 1 - PROJECT OVERVIEW
	1.1 Introduction
	1.2 System Architecture and Functionality

	CHAPTER 2 – TAILORING MEASURES TO THE PROJECT
	2.1 Development of SPOTS Measurement Strategy
	2.2 Implementation of SPOTS Measurement Strategy
	2.3 SPOTS Measurement Tools

	CHAPTER 3 – APPLYING SOFTWARE MEASURES
	3.1 Estimating Effort on an Individual Change Request
	3.2 Estimating Cost on a Software Maintenance Release
	3.3 Measuring Requirements Volatility
	3.4 Epilogue

	Part 7 - Supplemental Information
	TABLE OF CONTENTS
	GLOSSARY
	LIST OF ACRONYMS
	BIBLIOGRAPHY
	PSM PROJECT INFORMATION
	INDEX
	Evaluation and Comment Form

	Addendum - DoD Implementation Guide
	TABLE OF CONTENTS
	CHAPTER 1 - MEASUREMENT IN THE ACQUISITION PROCESS
	1.1 Pre-Acquisition Activities
	1.2 Acquisition Life Cycle
	1.3 Software Measurement in the Acquisition Process

	CHAPTER 2 - MEASUREMENT FOR INTEGRATED PRODUCT TEAMS
	CHAPTER 3 - PUTTING MEASUREMENT ON CONTRACT
	3.1 Overview of Contracting Process
	3.2 Contract Planning and Preparation
	3.3 Proposal Evaluation
	3.4 Negotiation
	3.5 Contract Modifications
	3.6 Sample RFP Wording

	CHAPTER 4 - USING WORK BREAKDOWN STRUCTURES
	CHAPTER 5 - INTEGRATING MEASUREMENT WITH EARNED VALUE

	Back to Texts:

